Ejemplo n.º 1
0
def gauss_laguerre(n):
    d = mp.matrix(mp.arange(1, 2 * n, 2))
    e = mp.matrix(mp.arange(-1, -n - 1, -1))
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 2
0
def gauss_genlaguerre(n, alpha):
    d = mp.matrix([i + alpha for i in mp.arange(1, 2 * n, 2)])
    e = [-mp.sqrt(k * (k + alpha)) for k in mp.arange(1, n)]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = mp.gamma(alpha + 1) * z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 3
0
def n_both_xis(n_max, y, cancel_keff=False):
    big_xi_list = [
        big_xi(n, y, cancel_keff=cancel_keff) for n in mp.arange(n_max + 1)
    ]
    small_xi_list = [
        small_xi(n, y, cancel_keff=cancel_keff) for n in mp.arange(n_max + 1)
    ]
    return np.array(big_xi_list,
                    dtype=return_dtype), np.array(small_xi_list,
                                                  dtype=return_dtype)
Ejemplo n.º 4
0
def gauss_jacobi(n, alpha, beta):
    d = mp.matrix([(beta**2 - alpha**2) / (2 * k + alpha + beta) /
                   (2 * k + alpha + beta - 2) for k in mp.arange(1, n + 1)])
    e = [
        k * (k + alpha) * (k + beta) * (k + alpha + beta) /
        ((2 * k + alpha + beta)**2 - 1) for k in mp.arange(1, n)
    ]
    e = [
        2 / (2 * k + alpha + beta) * mp.sqrt(x)
        for k, x in zip(mp.arange(1, n), e)
    ]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = 2**(alpha + beta + 1) * mp.beta(alpha + 1,
                                        beta + 1) * z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 5
0
def gauss_hermite(n):
    d = mp.matrix([mp.mpf('0.0') for _ in range(n)])
    e = [mp.sqrt(k / 2) for k in mp.arange(1, n)]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = mp.sqrt(mp.pi) * z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 6
0
def gauss_legendre(n):
    d = mp.matrix([mp.mpf('0.0') for _ in range(n)])
    e = [k / mp.sqrt(4 * k**2 - 1) for k in mp.arange(1, n)]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = 2 * z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 7
0
def gauss_gegenbauer(n, alpha):
    d = mp.matrix([mp.mpf('0.0') for _ in range(n)])
    e = [
        mp.sqrt(k * (k + 2 * alpha - 1) / ((2 * k + 2 * alpha - 1)**2 - 1))
        for k in mp.arange(1, n)
    ]
    e.append(mp.mpf('0.0'))
    e = mp.matrix(e)
    z = mp.eye(n)[0, :]

    tridiag_eigen(mp, d, e, z)
    z = 2**(2 * alpha) * mp.beta(alpha + 1 / 2,
                                 alpha + 1 / 2) * z.apply(lambda x: x**2)
    return d, z.T
Ejemplo n.º 8
0
def segregate(num, precision):
    mp.dps = precision
    num = int(mp.floor(mp.sqrt(num)) + 1)
    cores = processor_cnt
    if num <= processor_cnt:
        cores = num - 1
    num_mod = mp.fmod(num, cores)
    num_mods = [1 for _ in mp.arange(num_mod)]
    while len(num_mods) < cores:
        num_mods.append(0)
    num_div = mp.floor(mp.fdiv(num, cores))
    num_divs, ip = [], 0
    while len(num_divs) < cores:
        num_divs.append(num_div + num_mods[ip])
        ip += 1
    num_seg, place, seg = [num_divs[0]], num_divs[0], 1
    while len(num_seg) < cores:
        place += num_divs[seg]
        num_seg.append(place)
        seg += 1
    num_seg = [int(num_seg[i]) for i in range(len(num_seg))]
    return num_seg, cores
Ejemplo n.º 9
0
def n_small_xis(n_count, y, cancel_keff=False):
    xi_list = [
        small_xi(n, y, cancel_keff=cancel_keff) for n in mp.arange(n_count + 1)
    ]
    return np.array(xi_list, dtype=return_dtype)
Ejemplo n.º 10
0
for L in Lrange:
    mp.dps = 3.0 * L
    l = int(L / 4)
    la = list(range(l))
    lb = list(range(la[-1] + 1, la[-1] + l + 1))
    ld = list(range(lb[-1] + 1, L - l))
    lc = list(range(ld[-1] + 1, ld[-1] + l + 1))
    iter = 0
    #Parameters at t=0-
    w = mp.mpf(0.1)
    delta0 = mp.mpf(0.0)
    #Parameters at t=0+
    v = 1.5
    deltat = mp.mpf(0.0)
    tsteps = mp.arange(0.0, 50.01, 0.5)

    Sqtopo = []
    Sab = []
    Sbc = []
    Sb = []
    Sabc = []

    pvp = np.zeros(L)
    pvm = np.zeros(L)

    for i in list(range(L)):
        pvp[i] = (i + 1) % L
        pvm[(i + 1) % L] = i

#        outputfile="./SqtopoOBC_mpdps_"+str(mp.dps)+"_L_"+str(L)+"_l_"+str(l)+"_mu_"+mp.nstr(chemical0)+"_muf_"+mp.nstr(chemicalt)+"_d_"+mp.nstr(delta0)+"_dt_"+mp.nstr(deltat)+".dat"
Ejemplo n.º 11
0
def S_Kummer(beta0, kc, L, order, qmax):
    """Compute even and odd coefficents at an order number"""
    K = 2 * pi / L
    beta_n = lambda n: beta0 + n * K
    gamma_n = lambda n: -1j * np.sqrt(kc ** 2 - beta_n(n) ** 2 + 0j)
    theta_n = lambda n: np.arcsin(beta_n(n) / kc - 1j * np.sign(n) * np.spacing(1))

    if order == 0:
        qs = np.hstack([np.arange(-qmax, 0), np.arange(1, qmax + 1)])

        S0sum = 1 / gamma_n(qs) - 1 / (K * np.abs(qs)) \
            - (kc ** 2 + 2 * beta0 ** 2) / (2 * K ** 3 * np.abs(qs) ** 3)

        S0sum = np.sum(S0sum)

        S0 = -1 - (2j / pi) * (np.euler_gamma + np.log(kc / (2 * K))) \
        - 2j / (gamma_n(0) * L) \
        - 2j * (kc ** 2 + 2 * beta0 ** 2) * zeta(3) / (K ** 3 * L) \
        - (2j / L) * S0sum

        return S0

    qs = np.arange(1, qmax + 1)

    oeven = 2 * order
    oodd = 2 * order - 1
    # Even sum with wavenumber terms, large terms excluded
    SEsum0 = np.exp(-1j * oeven * theta_n(qs)) / gamma_n(qs) \
        + np.exp(1j * oeven * theta_n(-qs)) / gamma_n(-qs)
    SEsum0 = SEsum0.sum()
    SEsum0 += np.exp(-1j * oeven * theta_n(0)) / gamma_n(0)
    SEsum0 *= -2j / L

    # Odd sum with wavenumber terms, large terms excluded
    SOsum0 = np.exp(-1j * oodd * theta_n(qs)) / gamma_n(qs) \
        - np.exp(1j * oodd * theta_n(-qs)) / gamma_n(-qs)
    SOsum0 = SOsum0.sum()
    SOsum0 += np.exp(-1j * oodd * theta_n(0)) / gamma_n(0)
    SOsum0 *= 2j / L

    # Even sum with factorial terms
    ms = np.arange(1., order + 1)
    b = np.array([float(mp.bernpoly(2 * m, beta0 / K)) for m in ms])

    SEsumF = (-1) ** ms * 2 ** (2 * ms) * factorial(order + ms - 1) \
        * (K / kc) ** (2 * ms) * b \
        / (factorial(2 * ms) * factorial(order - ms))
    SEsumF = np.sum(SEsumF)
    SEsumF *= 1j / pi

    # Odd sum with factorial terms
    ms = np.arange(0, order)
    b = np.array([float(mp.bernpoly(2 * m + 1, beta0 / K)) for m in ms])

    SOsumF = (-1) ** ms * 2 ** (2 * ms) * factorial(order + ms - 1) \
        * (K / kc) ** (2 * ms + 1) * b \
        / (factorial(2 * ms + 1) * factorial(order - ms - 1))
    SOsumF = np.sum(SOsumF)
    SOsumF *= -2 / pi

    # extended precision calculations for large sum terms
    t1 = (1 / pi) * (kc / (2 * K)) ** oeven
    t2 = (beta0 * L * order / pi ** 2) * (kc / (2 * K)) ** oodd

    # assume we need ~15 digits of precision at a magnitude of 1
    dps = np.max([int(np.ceil(np.log10(np.abs(t1)))) + 15,
                 int(np.ceil(np.log10(np.abs(t2)))) + 15,
                 15])
    mp.dps = dps

    arg_ = mp.mpf(kc / (2 * K))
    SEinf = -(-1) ** order * arg_ ** (2 * order) \
          * mp.zeta(2 * order + 1) / mp.pi
    SOinf = (-1) ** order * beta0 * L * order * arg_ ** (2 * order - 1) \
          * mp.zeta(2 * order + 1) / mp.pi ** 2

    for i, m in enumerate(mp.arange(1, qmax + 1)):

        even_term = ((-1) ** order / (m * mp.pi)) * (arg_ / m) ** (2 * order)
        odd_term = ((-1) ** order * beta0 * L * order / (m ** 2 * mp.pi ** 2)) \
                * (arg_ / m) ** (2 * order - 1)
        SEinf += even_term
        SOinf -= odd_term

        # break condition, where we should be OK moving back to double precision
        if mp.fabs(even_term) < 1 and mp.fabs(odd_term) < 1:
            break

    mp.dps = 15
    SEinf = complex(SEinf)
    SOinf = complex(SOinf)

    if i + 1 < qmax:
        ms = np.arange(i + 2, qmax)
        even_terms = ((-1) ** order / (ms * pi)) \
                   * (kc / (2 * K * ms)) ** (2 * order)
        odd_terms = ((-1) ** order * beta0 * L * order / (ms ** 2 * pi ** 2)) \
                  * (kc / (2 * K * ms)) ** (2 * order - 1)

    SEinf += even_terms.sum()
    SEinf *= 2j
    SOinf -= odd_terms.sum()
    SOinf *= 2

    SEven = SEsum0 + SEinf + 1j / (pi * order) + SEsumF
    SOdd = SOsum0 + SOinf + SOsumF

    return SOdd, SEven
Ejemplo n.º 12
0
from mpmath import mp
import numpy as np

tin = 0.1
dt = 0.1
tfin = 2

Win = 0  #first amplitude of disorder
Wfin = 6  #last amplitude of disorder
dW = .2  #resolution of disorder amplitude

L = 64

t_vec = [mp.mpf(0.001)] + list(mp.arange(tin, tfin, dt))

W_vec = mp.arange(Win, Wfin, dW)

outputfile = "./BUMP_SD_length=" + str(L) + ".dat"
f1 = open(outputfile, "w")

for t in t_vec:

    for s in W_vec:
        print(t, s)
        inputfile = "./BUMP_SD_length=" + str(L) + "_t=" + mp.nstr(
            t, 3) + "_s=" + mp.nstr(s, 3) + ".dat"
        ND = np.genfromtxt(inputfile)  #,dtype=float, max_rows=250)
        ND = ND[~np.isnan(ND)]
        value = np.mean(ND)
        st = np.std(ND)
        f1.write("%.10f,%.10f,%.10f,%.10f,%i\n" % (t, s, value, st, len(ND)))
Ejemplo n.º 13
0
from mpmath import mp
from jinja2 import Environment, FileSystemLoader

class str_item:
  def __init__(self, n, l):
    self.number = n
    self.log10 = l[0:2] + "\,".join([l[i:i+3] for i in range(2, len(l), 3)])

if __name__ == "__main__":
  input_dps = 5
  output_dps = 60
  rows_per_page = 50
  mp.dps = output_dps + 10
  
  table_raw = []
  for number in mp.arange(1.0, 10.0, mp.power(10, -(input_dps-1))):
    table_raw.append([number, mp.log10(number)])
  
  table_str = []
  table_str = [str_item(mp.nstr(row[0], input_dps), mp.nstr(row[1], output_dps)) for row in table_raw]

  pages = [table_str[i:i+rows_per_page] for i in range(0, len(table_str), rows_per_page)]
  
  latex_renderer = Environment(
    block_start_string = "%{",
    block_end_string = "%}",
    line_statement_prefix = "%#",
    variable_start_string = "%{{",
    variable_end_string = "%}}",
    loader = FileSystemLoader("."))
  template = latex_renderer.get_template("template.tex")