Ejemplo n.º 1
0
 def test_misc(self):
     secint = mpc.SecInt()
     secfxp = mpc.SecFxp()
     secfld = mpc.SecFld()
     for secnum in (secint, secfxp, secfld):
         self.assertEqual(type(mpc.run(mpc.output(secnum(0), raw=True))), secnum.field)
         self.assertEqual(mpc.run(mpc.output(mpc._reshare([secnum(0)]))), [0])
         self.assertEqual(mpc.run(mpc.output(mpc.all(secnum(1) for _ in range(5)))), True)
         self.assertEqual(mpc.run(mpc.output(mpc.all([secnum(1), secnum(1), secnum(0)]))), False)
         self.assertEqual(mpc.run(mpc.output(mpc.any(secnum(0) for _ in range(5)))), False)
         self.assertEqual(mpc.run(mpc.output(mpc.any([secnum(0), secnum(1), secnum(1)]))), True)
         self.assertEqual(mpc.run(mpc.output(mpc.sum([secnum(1)], start=1))), 2)
         self.assertEqual(mpc.run(mpc.output(mpc.prod([secnum(1)], start=1))), 1)
         self.assertEqual(mpc.run(mpc.output(mpc.sum([secnum(1)], start=secnum(1)))), 2)
     self.assertEqual(mpc.run(mpc.output(mpc.min(secint(i) for i in range(-1, 2, 1)))), -1)
     self.assertEqual(mpc.run(mpc.output(mpc.argmin(secint(i) for i in range(-1, 2, 1))[0])), 0)
     self.assertEqual(mpc.run(mpc.output(mpc.max(secfxp(i) for i in range(-1, 2, 1)))), 1)
     self.assertEqual(mpc.run(mpc.output(mpc.argmax(secfxp(i) for i in range(-1, 2, 1))[0])), 2)
     self.assertEqual(mpc.run(mpc.output(list(mpc.min_max(map(secfxp, range(5)))))), [0, 4])
     x = (secint(i) for i in range(-3, 3))
     s = [0, -1, 1, -2, 2, -3]
     self.assertEqual(mpc.run(mpc.output(mpc.sorted(x, key=lambda a: a*(2*a+1)))), s)
     x = (secfxp(i) for i in range(5))
     self.assertEqual(mpc.run(mpc.output(mpc.sorted(x, reverse=True))), [4, 3, 2, 1, 0])
     self.assertEqual(mpc.run(mpc.output(mpc.sum(map(secint, range(5))))), 10)
     self.assertEqual(mpc.run(mpc.output(mpc.sum([secfxp(2.75)], start=3.125))), 5.875)
     self.assertEqual(int(mpc.run(mpc.output(mpc.prod(map(secfxp, range(1, 5)))))), 24)
     self.assertEqual(int(mpc.run(mpc.output(mpc.prod([secfxp(1.414214)]*4)))), 4)
Ejemplo n.º 2
0
 def test_misc(self):
     secint = mpc.SecInt()
     secfxp = mpc.SecFxp()
     secfld = mpc.SecFld()
     for secnum in (secint, secfxp, secfld):
         self.assertEqual(mpc.run(mpc.output(mpc._reshare([secnum(0)]))),
                          [0])
         self.assertEqual(
             mpc.run(mpc.output(mpc.all(secnum(1) for _ in range(5)))),
             True)
         self.assertEqual(
             mpc.run(mpc.output(mpc.all([secnum(1),
                                         secnum(1),
                                         secnum(0)]))), False)
         self.assertEqual(
             mpc.run(mpc.output(mpc.any(secnum(0) for _ in range(5)))),
             False)
         self.assertEqual(
             mpc.run(mpc.output(mpc.any([secnum(0),
                                         secnum(1),
                                         secnum(1)]))), True)
         self.assertEqual(
             mpc.run(mpc.output(mpc.sum([secnum(1)], start=1))), 2)
         self.assertEqual(
             mpc.run(mpc.output(mpc.prod([secnum(1)], start=1))), 1)
         self.assertEqual(
             mpc.run(mpc.output(mpc.sum([secnum(1)], start=secnum(1)))), 2)
     self.assertEqual(
         mpc.run(mpc.output(mpc.min(secint(i) for i in range(-1, 2, 1)))),
         -1)
     self.assertEqual(
         mpc.run(mpc.output(mpc.max(secfxp(i) for i in range(-1, 2, 1)))),
         1)
     self.assertEqual(
         mpc.run(mpc.output(list(mpc.min_max(map(secfxp, range(5)))))),
         [0, 4])
     self.assertEqual(mpc.run(mpc.output(mpc.sum(map(secint, range(5))))),
                      10)
     self.assertEqual(
         mpc.run(mpc.output(mpc.sum([secfxp(2.72)], start=3.14))), 5.86)
     self.assertEqual(
         int(mpc.run(mpc.output(mpc.prod(map(secfxp, range(1, 5)))))), 24)
     self.assertEqual(
         int(mpc.run(mpc.output(mpc.prod([secfxp(1.414214)] * 4)))), 4)
Ejemplo n.º 3
0
 def test_empty_input(self):
     secint = mpc.SecInt()
     self.assertEqual(mpc.run(mpc.gather([])), [])
     self.assertEqual(mpc.run(mpc.output([])), [])
     self.assertEqual(mpc._reshare([]), [])
     self.assertEqual(mpc.convert([], None), [])
     self.assertEqual(mpc.sum([]), 0)
     self.assertEqual(mpc.sum([], start=1), 1)
     self.assertEqual(mpc.run(mpc.output(mpc.sum([], start=secint(1)))), 1)
     self.assertEqual(mpc.prod([]), 1)
     self.assertEqual(mpc.all([]), 1)
     self.assertEqual(mpc.any([]), 0)
     self.assertEqual(mpc.in_prod([], []), 0)
     self.assertEqual(mpc.vector_add([], []), [])
     self.assertEqual(mpc.vector_sub([], []), [])
     self.assertEqual(mpc.scalar_mul(secint(0), []), [])
     self.assertEqual(mpc.schur_prod([], []), [])
     self.assertEqual(mpc.from_bits([]), 0)
Ejemplo n.º 4
0
async def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-i',
        '--dataset',
        type=int,
        metavar='I',
        help=('dataset 0=uvlp (default), 1=wiki, 2=tb2x2, 3=woody, '
              '4=LPExample_R20, 5=sc50b, 6=kb2, 7=LPExample'))
    parser.add_argument('-l',
                        '--bit-length',
                        type=int,
                        metavar='L',
                        help='override preset bit length for dataset')
    parser.set_defaults(dataset=0, bit_length=0)
    args = parser.parse_args()

    settings = [('uvlp', 24, 37 / 3), ('wiki', 24, 20), ('tb2x2', 18, 10.5),
                ('woody', 36, 540), ('LPExample_R20', 52, 3.441176),
                ('sc50b', 52, 70), ('kb2', 96, 1749.9204734889486),
                ('LPExample', 96, 1188806595)]
    name, bit_length, exact_max = settings[args.dataset]
    if args.bit_length:
        bit_length = args.bit_length

    with open(os.path.join('data', 'lp', name + '.csv')) as file:
        T = list(csv.reader(file))
    m = len(T) - 1
    n = len(T[0]) - 1
    secfxp = mpc.SecFxp(bit_length)
    print(
        f'Using secure {bit_length}-bit fixed-point numbers: {secfxp.__name__}'
    )
    print(f'dataset: {name} with {m} constraints and {n} variables')
    T[0][-1] = '0'  # initialize optimal value
    for i in range(m + 1):
        for j in range(n + 1):
            T[i][j] = secfxp(float(T[i][j]), integral=False)

    c = T[0][:-1]  # maximize c.x subject to A.x <= b, x >= 0
    A = [T[i + 1][:-1] for i in range(m)]
    b = [T[i + 1][-1] for i in range(m)]

    await mpc.start()

    cobasis = [secfxp(j) for j in range(n)]
    basis = [secfxp(n + i) for i in range(m)]

    iteration = 0
    while True:
        # find index of pivot column
        p_col_index, minimum = argmin_int(T[0][:-1])

        if await mpc.output(minimum >= 0):
            break  # maximum reached

        # find index of pivot row
        p_col = mpc.matrix_prod([p_col_index], T, True)[0]
        constraints = [[T[i][-1], p_col[i], p_col[i] > 0.0001]
                       for i in range(1, m + 1)]
        p_row_index, (_, pivot, _) = argmin_rat(constraints)

        # reveal progress a bit
        iteration += 1
        mx = await mpc.output(T[0][-1])
        p = await mpc.output(pivot)
        logging.info(f'Iteration {iteration}: {mx} pivot={p}')

        # swap basis entries
        delta = mpc.in_prod(basis, p_row_index) - mpc.in_prod(
            cobasis, p_col_index)
        cobasis = mpc.vector_add(cobasis, mpc.scalar_mul(delta, p_col_index))
        basis = mpc.vector_sub(basis, mpc.scalar_mul(delta, p_row_index))

        # update tableau Tij = Tij - (Til - bool(i==k))/Tkl * (Tkj + bool(j==l))
        p_col_index.append(secfxp(0))
        p_row_index.insert(0, secfxp(0))
        p_col = mpc.vector_sub(p_col, p_row_index)
        p_col = mpc.scalar_mul(1 / pivot, p_col)
        p_row = mpc.matrix_prod([p_row_index], T)[0]
        p_row = mpc.vector_add(p_row, p_col_index)
        T = mpc.gauss(T, secfxp(1), p_col, p_row)

    mx = await mpc.output(T[0][-1])
    rel_error = (mx - exact_max) / exact_max
    print(f'max = {mx} (error {rel_error:.3%}) in {iteration} iterations')

    logging.info('Solution x')
    x = [secfxp(0) for _ in range(n)]
    for i in range(m):
        u = mpc.unit_vector(basis[i], m + n)[:n]
        v = mpc.scalar_mul(T[i + 1][-1], u)
        x = mpc.vector_add(x, v)
    cx = mpc.in_prod(c, x)
    Ax = mpc.matrix_prod([x], A, True)[0]
    approx = lambda a: 1.01 * a + 0.0001
    Ax_bounded_by_b = mpc.all(Ax[i] <= approx(b[i]) for i in range(m))
    x_nonnegative = mpc.all(x[j] >= 0 for j in range(n))

    logging.info('Dual solution y')
    y = [secfxp(0) for _ in range(m)]
    for j in range(n):
        u = mpc.unit_vector(cobasis[j], m + n)[n:]
        v = mpc.scalar_mul(T[0][j], u)
        y = mpc.vector_sub(y, v)
    yb = mpc.in_prod(y, b)
    yA = mpc.matrix_prod([y], A)[0]
    approx = lambda a: mpc.if_else(a < 0, 1 / 1.01, 1.01) * a + 0.0001
    yA_bounded_by_c = mpc.all(yA[j] <= approx(c[j]) for j in range(n))
    y_nonpositive = mpc.all(y[i] <= 0 for i in range(m))

    cx_eq_yb = abs(cx - yb) <= 0.01 * abs(cx)
    check = mpc.all([
        cx_eq_yb, Ax_bounded_by_b, x_nonnegative, yA_bounded_by_c,
        y_nonpositive
    ])
    check = bool(await mpc.output(check))
    print(
        f'verification c.x == y.b, A.x <= b, x >= 0, y.A <= c, y <= 0: {check}'
    )

    x = await mpc.output(x)
    print(f'solution = {x}')

    await mpc.shutdown()
Ejemplo n.º 5
0
 def test_misc(self):
     secint = mpc.SecInt()
     secfxp = mpc.SecFxp()
     secfld = mpc.SecFld()
     for secnum in (secint, secfxp, secfld):
         self.assertEqual(type(mpc.run(mpc.output(secnum(0), raw=True))),
                          secnum.field)
         self.assertEqual(mpc.run(mpc.output(mpc._reshare([secnum(0)]))),
                          [0])
         self.assertEqual(
             mpc.run(mpc.output(mpc.all(secnum(1) for _ in range(5)))),
             True)
         self.assertEqual(
             mpc.run(mpc.output(mpc.all([secnum(1),
                                         secnum(1),
                                         secnum(0)]))), False)
         self.assertEqual(
             mpc.run(mpc.output(mpc.any(secnum(0) for _ in range(5)))),
             False)
         self.assertEqual(
             mpc.run(mpc.output(mpc.any([secnum(0),
                                         secnum(1),
                                         secnum(1)]))), True)
         self.assertEqual(
             mpc.run(mpc.output(mpc.sum([secnum(1)], start=1))), 2)
         self.assertEqual(
             mpc.run(mpc.output(mpc.prod([secnum(1)], start=1))), 1)
         self.assertEqual(
             mpc.run(mpc.output(mpc.sum([secnum(1)], start=secnum(1)))), 2)
         self.assertEqual(
             mpc.run(mpc.output(mpc.find([secnum(1)], 0, e=-1))), -1)
         self.assertEqual(mpc.run(mpc.output(mpc.find([secnum(1)], 1))), 0)
         self.assertEqual(
             mpc.run(mpc.output(mpc.find([secnum(1)], 1, f=lambda i: i))),
             0)
     self.assertEqual(
         mpc.run(mpc.output(mpc.min(secint(i) for i in range(-1, 2, 1)))),
         -1)
     self.assertEqual(
         mpc.run(
             mpc.output(mpc.argmin(secint(i) for i in range(-1, 2, 1))[0])),
         0)
     self.assertEqual(
         mpc.run(mpc.output(mpc.max(secfxp(i) for i in range(-1, 2, 1)))),
         1)
     self.assertEqual(
         mpc.run(
             mpc.output(mpc.argmax(secfxp(i) for i in range(-1, 2, 1))[0])),
         2)
     self.assertEqual(
         mpc.run(mpc.output(list(mpc.min_max(map(secfxp, range(5)))))),
         [0, 4])
     x = (secint(i) for i in range(-3, 3))
     s = [0, -1, 1, -2, 2, -3]
     self.assertEqual(
         mpc.run(mpc.output(mpc.sorted(x, key=lambda a: a * (2 * a + 1)))),
         s)
     x = (secfxp(i) for i in range(5))
     self.assertEqual(mpc.run(mpc.output(mpc.sorted(x, reverse=True))),
                      [4, 3, 2, 1, 0])
     self.assertEqual(mpc.run(mpc.output(mpc.sum(map(secint, range(5))))),
                      10)
     self.assertEqual(
         mpc.run(mpc.output(mpc.sum([secfxp(2.75)], start=3.125))), 5.875)
     self.assertEqual(
         int(mpc.run(mpc.output(mpc.prod(map(secfxp, range(1, 5)))))), 24)
     self.assertEqual(
         int(mpc.run(mpc.output(mpc.prod([secfxp(1.414214)] * 4)))), 4)
     self.assertEqual(mpc.find([], 0), 0)
     self.assertEqual(mpc.find([], 0, e=None), (1, 0))
     self.assertEqual(
         mpc.run(mpc.output(list(mpc.find([secfld(1)], 1, e=None)))),
         [0, 0])
     self.assertEqual(
         mpc.run(mpc.output(mpc.find([secfld(2)], 2, bits=False))), 0)
     x = [secint(i) for i in range(5)]
     f = lambda i: [i**2, 3**i]
     self.assertEqual(mpc.run(mpc.output(mpc.find(x, 2, bits=False, f=f))),
                      [4, 9])
     cs_f = lambda b, i: [b * (2 * i + 1) + i**2, (b * 2 + 1) * 3**i]
     self.assertEqual(
         mpc.run(mpc.output(mpc.find(x, 2, bits=False, cs_f=cs_f))), [4, 9])
Ejemplo n.º 6
0
async def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-i',
        '--dataset',
        type=int,
        metavar='I',
        help=('dataset 0=uvlp (default), 1=wiki, 2=tb2x2, 3=woody, '
              '4=LPExample_R20, 5=sc50b, 6=kb2, 7=LPExample'))
    parser.add_argument('-l',
                        '--bit-length',
                        type=int,
                        metavar='L',
                        help='override preset bit length for dataset')
    parser.set_defaults(dataset=0, bit_length=0)
    args = parser.parse_args()

    settings = [('uvlp', 8, 1, 2), ('wiki', 6, 1, 2), ('tb2x2', 6, 1, 2),
                ('woody', 8, 1, 3), ('LPExample_R20', 70, 1, 5),
                ('sc50b', 104, 10, 55), ('kb2', 536, 100000, 106),
                ('LPExample', 110, 1, 178)]
    name, bit_length, scale, n_iter = settings[args.dataset]
    if args.bit_length:
        bit_length = args.bit_length

    with open(os.path.join('data', 'lp', name + '.csv')) as file:
        T = list(csv.reader(file))
    m = len(T) - 1
    n = len(T[0]) - 1
    secint = mpc.SecInt(bit_length, n=m +
                        n)  # force existence of Nth root of unity, N>=m+n
    print(f'Using secure {bit_length}-bit integers: {secint.__name__}')
    print(
        f'dataset: {name} with {m} constraints and {n} variables (scale factor {scale})'
    )
    T[0][-1] = '0'  # initialize optimal value
    for i in range(m + 1):
        g = 0
        for j in range(n + 1):
            T[i][j] = int(scale * float(T[i][j]))  # scale to integer
            g = math.gcd(g, T[i][j])
        g = max(g, 1) if i else 1  # skip cost row
        for j in range(n + 1):
            T[i][j] = secint(T[i][j] // g)

    c = T[0][:-1]  # maximize c.x subject to A.x <= b, x >= 0
    A = [T[i + 1][:-1] for i in range(m)]
    b = [T[i + 1][-1] for i in range(m)]

    Zp = secint.field
    N = Zp.nth
    w = Zp.root  # w is an Nth root of unity in Zp, where N >= m + n
    w_powers = [Zp(1)]
    for _ in range(N - 1):
        w_powers.append(w_powers[-1] * w)
    assert w_powers[-1] * w == 1

    await mpc.start()

    cobasis = [secint(w_powers[-j]) for j in range(n)]
    basis = [secint(w_powers[-(i + n)]) for i in range(m)]
    previous_pivot = secint(1)

    iteration = 0
    while True:
        # find index of pivot column
        p_col_index, minimum = argmin_int(T[0][:-1])
        if await mpc.output(minimum >= 0):
            break  # maximum reached

        # find index of pivot row
        p_col = mpc.matrix_prod([p_col_index], T, True)[0]
        constraints = [[T[i][-1] + (p_col[i] <= 0), p_col[i]]
                       for i in range(1, m + 1)]
        p_row_index, (_, pivot) = argmin_rat(constraints)

        # reveal progress a bit
        iteration += 1
        mx = await mpc.output(T[0][-1])
        cd = await mpc.output(previous_pivot)
        p = await mpc.output(pivot)  # NB: no await in f-strings in Python 3.6
        logging.info(
            f'Iteration {iteration}/{n_iter}: {mx / cd} pivot={p / cd}')

        # swap basis entries
        delta = mpc.in_prod(basis, p_row_index) - mpc.in_prod(
            cobasis, p_col_index)
        cobasis = mpc.vector_add(cobasis, mpc.scalar_mul(delta, p_col_index))
        basis = mpc.vector_sub(basis, mpc.scalar_mul(delta, p_row_index))

        # update tableau Tij = Tij*Tkl/Tkl' - (Til/Tkl' - bool(i==k)) * (Tkj + bool(j==l)*Tkl')
        p_col_index.append(secint(0))
        p_row_index.insert(0, secint(0))
        pp_inv = 1 / previous_pivot
        p_col = mpc.scalar_mul(pp_inv, p_col)
        p_col = mpc.vector_sub(p_col, p_row_index)
        p_row = mpc.matrix_prod([p_row_index], T)[0]
        p_row = mpc.vector_add(p_row,
                               mpc.scalar_mul(previous_pivot, p_col_index))
        T = mpc.gauss(T, pivot * pp_inv, p_col, p_row)
        previous_pivot = pivot

    mx = await mpc.output(T[0][-1])
    cd = await mpc.output(previous_pivot
                          )  # common denominator for all entries of T
    print(
        f'max = {mx} / {cd} / {scale} = {mx / cd / scale} in {iteration} iterations'
    )

    logging.info('Solution x')
    sum_x_powers = [secint(0) for _ in range(N)]
    for i in range(m):
        x_powers = pow_list(T[i + 1][-1] / N, basis[i], N)
        sum_x_powers = mpc.vector_add(sum_x_powers, x_powers)
    x = [None] * n
    for j in range(n):
        coefs = [w_powers[(j * k) % N] for k in range(N)]
        x[j] = mpc.in_prod(coefs, sum_x_powers)
    cx = mpc.in_prod(c, x)
    Ax = mpc.matrix_prod([x], A, True)[0]
    Ax_bounded_by_b = mpc.all(Ax[i] <= b[i] * cd for i in range(m))
    x_nonnegative = mpc.all(x[j] >= 0 for j in range(n))

    logging.info('Dual solution y')
    sum_x_powers = [secint(0) for _ in range(N)]
    for j in range(n):
        x_powers = pow_list(T[0][j] / N, cobasis[j], N)
        sum_x_powers = mpc.vector_add(sum_x_powers, x_powers)
    y = [None] * m
    for i in range(m):
        coefs = [w_powers[((n + i) * k) % N] for k in range(N)]
        y[i] = mpc.in_prod(coefs, sum_x_powers)
        y[i] = -y[i]
    yb = mpc.in_prod(y, b)
    yA = mpc.matrix_prod([y], A)[0]
    yA_bounded_by_c = mpc.all(yA[j] <= c[j] * cd for j in range(n))
    y_nonpositive = mpc.all(y[i] <= 0 for i in range(m))

    cx_eq_yb = cx == yb
    check = mpc.all([
        cx_eq_yb, Ax_bounded_by_b, x_nonnegative, yA_bounded_by_c,
        y_nonpositive
    ])
    check = bool(await mpc.output(check))
    print(
        f'verification c.x == y.b, A.x <= b, x >= 0, y.A <= c, y <= 0: {check}'
    )

    x = await mpc.output(x)
    print(f'solution = {[a / cd for a in x]}')

    await mpc.shutdown()
Ejemplo n.º 7
0
m = len(mpc.parties)

if m % 2 == 0:
    print('Odd number of parties required.')
    sys.exit()

t = m // 2

voters = list(range(t + 1))  # parties P[0],...,P[t]

if mpc.pid in voters:
    vote = int(sys.argv[1]) if sys.argv[1:] else 1  # default "yes"
else:
    vote = None  # no input

secbit = mpc.SecFld(2)  # secure bits over GF(2)

mpc.run(mpc.start())
votes = mpc.input(secbit(vote), senders=voters)
result = mpc.run(mpc.output(mpc.all(votes), receivers=voters))
mpc.run(mpc.shutdown())

if result is None:  # no output
    print('Thanks for serving as oblivious matchmaker;)')
elif result:
    print(
        f'Match: unanimous agreement between {t+1} part{"ies" if t else "y"}!')
else:
    print(
        f'No match: someone disagrees among {t+1} part{"ies" if t else "y"}?')