Ejemplo n.º 1
0
def makearbitrarygrad(kwargs):
    """
    Makes a Holder object for an arbitrary gradient Event.

    Parameters
    ----------
    kwargs : dict
        Key value mappings of RF Event parameters_params and values.

    Returns
    -------
    grad : Holder
        Trapezoidal gradient Event configured based on supplied kwargs.
    """

    channel = kwargs.get("channel", "z")
    system = kwargs.get("system", Opts())
    waveform = kwargs.get("waveform")
    max_grad_result = kwargs.get("max_grad", 0)
    max_slew_result = kwargs.get("max_slew", 0)

    max_grad = max_grad_result if max_grad_result > 0 else system.max_grad
    max_slew = max_slew_result if max_slew_result > 0 else system.max_slew

    g = waveform
    slew = (g[0][1:] - g[0][0:-1]) / system.grad_raster_time
    if max(abs(slew)) > max_slew:
        raise ValueError('Slew rate violation {:f}'.format(
            max(abs(slew)) / max_slew * 100))
    if max(abs(g[0])) > max_grad:
        raise ValueError('Gradient amplitude violation {:f}'.format(
            max(abs(g)) / max_grad * 100))
    grad = Holder()
    grad.type = 'grad'
    grad.channel = channel
    grad.waveform = g
    grad.t = np.array([[x * system.grad_raster_time
                        for x in range(len(g[0]))]])
    return grad
Ejemplo n.º 2
0
def get_block(self, block_index):
    """
    Returns Block at position specified by block_index.

    Parameters
    ----------
    block_index : int
        Index of Block to be retrieved.

    Returns
    -------
    block : dict
        Block at position specified by block_index.
    """

    block = {}
    event_ind = self.block_events[block_index]
    if event_ind[0] > 0:
        delay = Holder()
        delay.type = 'delay'
        delay.delay = self.delay_library.data[event_ind[0]]
        block['delay'] = delay
    elif event_ind[1] > 0:
        rf = Holder()
        rf.type = 'rf'
        lib_data = self.rf_library.data[event_ind[1]]

        amplitude, mag_shape, phase_shape = lib_data[0], lib_data[1], lib_data[
            2]
        shape_data = self.shape_library.data[mag_shape]
        compressed = Holder()
        compressed.num_samples = shape_data[0][0]
        compressed.data = shape_data[0][1:]
        compressed.data = compressed.data.reshape(
            (1, compressed.data.shape[0]))
        mag = decompress_shape(compressed)
        shape_data = self.shape_library.data[phase_shape]
        compressed.num_samples = shape_data[0][0]
        compressed.data = shape_data[0][1:]
        compressed.data = compressed.data.reshape(
            (1, compressed.data.shape[0]))
        phase = decompress_shape(compressed)
        rf.signal = 1j * 2 * np.pi * phase
        rf.signal = amplitude * mag * np.exp(rf.signal)
        rf.t = [(x * self.rf_raster_time)
                for x in range(1,
                               max(mag.shape) + 1)]
        rf.t = np.reshape(rf.t, (1, len(rf.t)))
        rf.freq_offset = lib_data[3]
        rf.phase_offset = lib_data[4]
        if max(lib_data.shape) < 6:
            lib_data = np.append(lib_data, 0)
        rf.dead_time = lib_data[5]

        block['rf'] = rf
    grad_channels = ['gx', 'gy', 'gz']
    for i in range(1, len(grad_channels) + 1):
        if event_ind[2 + (i - 1)] > 0:
            grad, compressed = Holder(), Holder()
            type = self.grad_library.type[event_ind[2 + (i - 1)]]
            lib_data = self.grad_library.data[event_ind[2 + (i - 1)]]
            grad.type = 'trap' if type == 't' else 'grad'
            grad.channel = grad_channels[i - 1][1]
            if grad.type == 'grad':
                amplitude = lib_data[0]
                shape_id = lib_data[1]
                shape_data = self.shape_library.data[shape_id]
                compressed.num_samples = shape_data[0][0]
                compressed.data = np.array([shape_data[0][1:]])
                g = decompress_shape(compressed)
                grad.waveform = amplitude * g
                grad.t = np.array([[
                    x * self.grad_raster_time for x in range(1, g.size + 1)
                ]])
            else:
                grad.amplitude, grad.rise_time, grad.flat_time, grad.fall_time = [
                    lib_data[x] for x in range(4)
                ]
                grad.area = grad.amplitude * (
                    grad.flat_time + grad.rise_time / 2 + grad.fall_time / 2)
                grad.flat_area = grad.amplitude * grad.flat_time
            block[grad_channels[i - 1]] = grad

    if event_ind[5] > 0:
        lib_data = self.adc_library.data[event_ind[5]]
        if max(lib_data.shape) < 6:
            lib_data = np.append(lib_data, 0)
        adc = Holder()
        adc.num_samples, adc.dwell, adc.delay, adc.freq_offset, adc.phase_offset, adc.dead_time = [
            lib_data[x] for x in range(6)
        ]
        adc.type = 'adc'
        block['adc'] = adc
    return block