Ejemplo n.º 1
0
def test_initialize_variants():
    # Test NNDSVD variants correctness
    # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
    # 'nndsvd' only where the basic version has zeros.
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd')
    Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda')
    War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar',
                                   random_state=0)

    for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
        assert_almost_equal(evl[ref != 0], ref[ref != 0])
Ejemplo n.º 2
0
def test_nmf_decreasing():
    # test that the objective function is decreasing at each iteration
    n_samples = 20
    n_features = 15
    n_components = 10
    alpha = 0.1
    l1_ratio = 0.5
    tol = 0.

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.abs(X, X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
                                 random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
        for solver in ('cd', 'mu'):
            if solver != 'mu' and beta_loss != 2:
                # not implemented
                continue
            W, H = W0.copy(), H0.copy()
            previous_loss = None
            for _ in range(30):
                # one more iteration starting from the previous results
                W, H, _ = non_negative_factorization(
                    X, W, H, beta_loss=beta_loss, init='custom',
                    n_components=n_components, max_iter=1, alpha=alpha,
                    solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0,
                    regularization='both', random_state=0, update_H=True)

                loss = nmf._beta_divergence(X, W, H, beta_loss)
                if previous_loss is not None:
                    assert previous_loss > loss
                previous_loss = loss
Ejemplo n.º 3
0
def test_initialize_nn_output():
    # Test that initialization does not return negative values
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'):
        W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
        assert not ((W < 0).any() or (H < 0).any())
Ejemplo n.º 4
0
def test_initialize_close():
    # Test NNDSVD error
    # Test that _initialize_nmf error is less than the standard deviation of
    # the entries in the matrix.
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    W, H = nmf._initialize_nmf(A, 10, init='nndsvd')
    error = linalg.norm(np.dot(W, H) - A)
    sdev = linalg.norm(A - A.mean())
    assert error <= sdev
Ejemplo n.º 5
0
    def _fit_transform(self, X, y=None, W=None, H=None, update_H=True):
        X = check_array(X, accept_sparse=('csr', 'csc'))
        check_non_negative(X, "NMF (input X)")

        n_samples, n_features = X.shape
        n_components = self.n_components
        if n_components is None:
            n_components = n_features

        if (not isinstance(n_components, numbers.Integral) or
                n_components <= 0):
            raise ValueError("Number of components must be a positive integer;"
                             " got (n_components=%r)" % n_components)
        if (not isinstance(self.max_iter, numbers.Integral) or
                self.max_iter < 0):
            raise ValueError("Maximum number of iterations must be a positive "
                             "integer; got (max_iter=%r)" % self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                             "positive; got (tol=%r)" % self.tol)

        # check W and H, or initialize them
        if self.init == 'custom' and update_H:
            _check_init(H, (n_components, n_features), "NMF (input H)")
            _check_init(W, (n_samples, n_components), "NMF (input W)")
        elif not update_H:
            _check_init(H, (n_components, n_features), "NMF (input H)")
            W = np.zeros((n_samples, n_components))
        else:
            W, H = _initialize_nmf(X, n_components, init=self.init,
                                   random_state=self.random_state)

        if update_H:  # fit_transform
            W, H, n_iter = _fit_projected_gradient(
                X, W, H, self.tol, self.max_iter, self.nls_max_iter,
                self.alpha, self.l1_ratio)
        else:  # transform
            Wt, _, n_iter = _nls_subproblem(X.T, H.T, W.T, self.tol,
                                            self.nls_max_iter,
                                            alpha=self.alpha,
                                            l1_ratio=self.l1_ratio)
            W = Wt.T

        if n_iter == self.max_iter and self.tol > 0:
            warnings.warn("Maximum number of iteration %d reached. Increase it"
                          " to improve convergence." % self.max_iter,
                          ConvergenceWarning)

        return W, H, n_iter
Ejemplo n.º 6
0
def test_nmf_multiplicative_update_sparse():
    # Compare sparse and dense input in multiplicative update NMF
    # Also test continuity of the results with respect to beta_loss parameter
    n_samples = 20
    n_features = 10
    n_components = 5
    alpha = 0.1
    l1_ratio = 0.5
    n_iter = 20

    # initialization
    rng = np.random.mtrand.RandomState(1337)
    X = rng.randn(n_samples, n_features)
    X = np.abs(X)
    X_csr = sp.csr_matrix(X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
                                 random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
        # Reference with dense array X
        W, H = W0.copy(), H0.copy()
        W1, H1, _ = non_negative_factorization(
            X, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        # Compare with sparse X
        W, H = W0.copy(), H0.copy()
        W2, H2, _ = non_negative_factorization(
            X_csr, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        assert_array_almost_equal(W1, W2, decimal=7)
        assert_array_almost_equal(H1, H2, decimal=7)

        # Compare with almost same beta_loss, since some values have a specific
        # behavior, but the results should be continuous w.r.t beta_loss
        beta_loss -= 1.e-5
        W, H = W0.copy(), H0.copy()
        W3, H3, _ = non_negative_factorization(
            X_csr, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        assert_array_almost_equal(W1, W3, decimal=4)
        assert_array_almost_equal(H1, H3, decimal=4)
Ejemplo n.º 7
0
def test_beta_divergence():
    # Compare _beta_divergence with the reference _beta_divergence_dense
    n_samples = 20
    n_features = 10
    n_components = 5
    beta_losses = [0., 0.5, 1., 1.5, 2.]

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = sp.csr_matrix(X)
    W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42)

    for beta in beta_losses:
        ref = _beta_divergence_dense(X, W, H, beta)
        loss = nmf._beta_divergence(X, W, H, beta)
        loss_csr = nmf._beta_divergence(X_csr, W, H, beta)

        assert_almost_equal(ref, loss, decimal=7)
        assert_almost_equal(ref, loss_csr, decimal=7)
Ejemplo n.º 8
0
def run_bench(X, clfs, plot_name, n_components, tol, alpha, l1_ratio):
    start = time()
    results = []
    for name, clf_type, iter_range, clf_params in clfs:
        print("Training %s:" % name)
        for rs, init in enumerate(('nndsvd', 'nndsvdar', 'random')):
            print("    %s %s: " % (init, " " * (8 - len(init))), end="")
            W, H = _initialize_nmf(X, n_components, init, 1e-6, rs)

            for max_iter in iter_range:
                clf_params['alpha'] = alpha
                clf_params['l1_ratio'] = l1_ratio
                clf_params['max_iter'] = max_iter
                clf_params['tol'] = tol
                clf_params['random_state'] = rs
                clf_params['init'] = 'custom'
                clf_params['n_components'] = n_components

                this_loss, duration = bench_one(name, X, W, H, X.shape,
                                                clf_type, clf_params,
                                                init, n_components, rs)

                init_name = "init='%s'" % init
                results.append((name, this_loss, duration, init_name))
                # print("loss: %.6f, time: %.3f sec" % (this_loss, duration))
                print(".", end="")
                sys.stdout.flush()
            print(" ")

    # Use a panda dataframe to organize the results
    results_df = pandas.DataFrame(results,
                                  columns="method loss time init".split())
    print("Total time = %0.3f sec\n" % (time() - start))

    # plot the results
    plot_results(results_df, plot_name)
    return results_df