Ejemplo n.º 1
0
def test_lda_orthogonality():
    # arrange four classes with their means in a kite-shaped pattern
    # the longer distance should be transformed to the first component, and
    # the shorter distance to the second component.
    means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]])

    # We construct perfectly symmetric distributions, so the LDA can estimate
    # precise means.
    scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0],
                        [0, 0, 0.1], [0, 0, -0.1]])

    X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3))
    y = np.repeat(np.arange(means.shape[0]), scatter.shape[0])

    # Fit LDA and transform the means
    clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y)
    means_transformed = clf.transform(means)

    d1 = means_transformed[3] - means_transformed[0]
    d2 = means_transformed[2] - means_transformed[1]
    d1 /= np.sqrt(np.sum(d1**2))
    d2 /= np.sqrt(np.sum(d2**2))

    # the transformed within-class covariance should be the identity matrix
    assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2))

    # the means of classes 0 and 3 should lie on the first component
    assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0)

    # the means of classes 1 and 2 should lie on the second component
    assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0)
Ejemplo n.º 2
0
def test_lda_store_covariance():
    # Test for solver 'lsqr' and 'eigen'
    # 'store_covariance' has no effect on 'lsqr' and 'eigen' solvers
    for solver in ('lsqr', 'eigen'):
        clf = LinearDiscriminantAnalysis(solver=solver).fit(X6, y6)
        assert hasattr(clf, 'covariance_')

        # Test the actual attribute:
        clf = LinearDiscriminantAnalysis(solver=solver,
                                         store_covariance=True).fit(X6, y6)
        assert hasattr(clf, 'covariance_')

        assert_array_almost_equal(
            clf.covariance_,
            np.array([[0.422222, 0.088889], [0.088889, 0.533333]]))

    # Test for SVD solver, the default is to not set the covariances_ attribute
    clf = LinearDiscriminantAnalysis(solver='svd').fit(X6, y6)
    assert not hasattr(clf, 'covariance_')

    # Test the actual attribute:
    clf = LinearDiscriminantAnalysis(solver=solver,
                                     store_covariance=True).fit(X6, y6)
    assert hasattr(clf, 'covariance_')

    assert_array_almost_equal(
        clf.covariance_, np.array([[0.422222, 0.088889], [0.088889,
                                                          0.533333]]))
Ejemplo n.º 3
0
def test_lda_dimension_warning(n_classes, n_features):
    # FIXME: Future warning to be removed in 0.23
    rng = check_random_state(0)
    n_samples = 10
    X = rng.randn(n_samples, n_features)
    # we create n_classes labels by repeating and truncating a
    # range(n_classes) until n_samples
    y = np.tile(range(n_classes), n_samples // n_classes + 1)[:n_samples]
    max_components = min(n_features, n_classes - 1)

    for n_components in [max_components - 1, None, max_components]:
        # if n_components <= min(n_classes - 1, n_features), no warning
        lda = LinearDiscriminantAnalysis(n_components=n_components)
        assert_no_warnings(lda.fit, X, y)

    for n_components in [
            max_components + 1,
            max(n_features, n_classes - 1) + 1
    ]:
        # if n_components > min(n_classes - 1, n_features), raise warning
        # We test one unit higher than max_components, and then something
        # larger than both n_features and n_classes - 1 to ensure the test
        # works for any value of n_component
        lda = LinearDiscriminantAnalysis(n_components=n_components)
        msg = ("n_components cannot be larger than min(n_features, "
               "n_classes - 1). Using min(n_features, "
               "n_classes - 1) = min(%d, %d - 1) = %d components." %
               (n_features, n_classes, max_components))
        assert_warns_message(ChangedBehaviorWarning, msg, lda.fit, X, y)
        future_msg = ("In version 0.23, setting n_components > min("
                      "n_features, n_classes - 1) will raise a "
                      "ValueError. You should set n_components to None"
                      " (default), or a value smaller or equal to "
                      "min(n_features, n_classes - 1).")
        assert_warns_message(FutureWarning, future_msg, lda.fit, X, y)
Ejemplo n.º 4
0
def test_raises_value_error_on_same_number_of_classes_and_samples(solver):
    """
    Tests that if the number of samples equals the number
    of classes, a ValueError is raised.
    """
    X = np.array([[0.5, 0.6], [0.6, 0.5]])
    y = np.array(["a", "b"])
    clf = LinearDiscriminantAnalysis(solver=solver)
    with pytest.raises(ValueError, match="The number of samples must be more"):
        clf.fit(X, y)
Ejemplo n.º 5
0
def test_lda_transform():
    # Test LDA transform.
    clf = LinearDiscriminantAnalysis(solver="svd", n_components=1)
    X_transformed = clf.fit(X, y).transform(X)
    assert X_transformed.shape[1] == 1
    clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1)
    X_transformed = clf.fit(X, y).transform(X)
    assert X_transformed.shape[1] == 1

    clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1)
    clf.fit(X, y)
    msg = "transform not implemented for 'lsqr'"
    assert_raise_message(NotImplementedError, msg, clf.transform, X)
Ejemplo n.º 6
0
def test_set_random_state():
    lda = LinearDiscriminantAnalysis()
    tree = DecisionTreeClassifier()
    # Linear Discriminant Analysis doesn't have random state: smoke test
    set_random_state(lda, 3)
    set_random_state(tree, 3)
    assert tree.random_state == 3
Ejemplo n.º 7
0
def test_lda_scaling():
    # Test if classification works correctly with differently scaled features.
    n = 100
    rng = np.random.RandomState(1234)
    # use uniform distribution of features to make sure there is absolutely no
    # overlap between classes.
    x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0]
    x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0]
    x = np.vstack((x1, x2)) * [1, 100, 10000]
    y = [-1] * n + [1] * n

    for solver in ('svd', 'lsqr', 'eigen'):
        clf = LinearDiscriminantAnalysis(solver=solver)
        # should be able to separate the data perfectly
        assert clf.fit(x, y).score(x,
                                   y) == 1.0, ('using covariance: %s' % solver)
Ejemplo n.º 8
0
def test_lda_numeric_consistency_float32_float64():
    for (solver, shrinkage) in solver_shrinkage:
        clf_32 = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage)
        clf_32.fit(X.astype(np.float32), y.astype(np.float32))
        clf_64 = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage)
        clf_64.fit(X.astype(np.float64), y.astype(np.float64))

        # Check value consistency between types
        rtol = 1e-6
        assert_allclose(clf_32.coef_, clf_64.coef_, rtol=rtol)
Ejemplo n.º 9
0
def test_set_random_states():
    # Linear Discriminant Analysis doesn't have random state: smoke test
    _set_random_states(LinearDiscriminantAnalysis(), random_state=17)

    clf1 = Perceptron(random_state=None)
    assert clf1.random_state is None
    # check random_state is None still sets
    _set_random_states(clf1, None)
    assert isinstance(clf1.random_state, int)

    # check random_state fixes results in consistent initialisation
    _set_random_states(clf1, 3)
    assert isinstance(clf1.random_state, int)
    clf2 = Perceptron(random_state=None)
    _set_random_states(clf2, 3)
    assert clf1.random_state == clf2.random_state

    # nested random_state

    def make_steps():
        return [('sel', SelectFromModel(Perceptron(random_state=None))),
                ('clf', Perceptron(random_state=None))]

    est1 = Pipeline(make_steps())
    _set_random_states(est1, 3)
    assert isinstance(est1.steps[0][1].estimator.random_state, int)
    assert isinstance(est1.steps[1][1].random_state, int)
    assert (est1.get_params()['sel__estimator__random_state'] !=
            est1.get_params()['clf__random_state'])

    # ensure multiple random_state parameters are invariant to get_params()
    # iteration order

    class AlphaParamPipeline(Pipeline):
        def get_params(self, *args, **kwargs):
            params = Pipeline.get_params(self, *args, **kwargs).items()
            return OrderedDict(sorted(params))

    class RevParamPipeline(Pipeline):
        def get_params(self, *args, **kwargs):
            params = Pipeline.get_params(self, *args, **kwargs).items()
            return OrderedDict(sorted(params, reverse=True))

    for cls in [AlphaParamPipeline, RevParamPipeline]:
        est2 = cls(make_steps())
        _set_random_states(est2, 3)
        assert (est1.get_params()['sel__estimator__random_state'] ==
                est2.get_params()['sel__estimator__random_state'])
        assert (est1.get_params()['clf__random_state'] == est2.get_params()
                ['clf__random_state'])
Ejemplo n.º 10
0
def test_lda_priors():
    # Test priors (negative priors)
    priors = np.array([0.5, -0.5])
    clf = LinearDiscriminantAnalysis(priors=priors)
    msg = "priors must be non-negative"
    assert_raise_message(ValueError, msg, clf.fit, X, y)

    # Test that priors passed as a list are correctly handled (run to see if
    # failure)
    clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5])
    clf.fit(X, y)

    # Test that priors always sum to 1
    priors = np.array([0.5, 0.6])
    prior_norm = np.array([0.45, 0.55])
    clf = LinearDiscriminantAnalysis(priors=priors)
    assert_warns(UserWarning, clf.fit, X, y)
    assert_array_almost_equal(clf.priors_, prior_norm, 2)
Ejemplo n.º 11
0
def test_lda_explained_variance_ratio():
    # Test if the sum of the normalized eigen vectors values equals 1,
    # Also tests whether the explained_variance_ratio_ formed by the
    # eigen solver is the same as the explained_variance_ratio_ formed
    # by the svd solver

    state = np.random.RandomState(0)
    X = state.normal(loc=0, scale=100, size=(40, 20))
    y = state.randint(0, 3, size=(40, ))

    clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen")
    clf_lda_eigen.fit(X, y)
    assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3)
    assert clf_lda_eigen.explained_variance_ratio_.shape == (2, ), (
        "Unexpected length for explained_variance_ratio_")

    clf_lda_svd = LinearDiscriminantAnalysis(solver="svd")
    clf_lda_svd.fit(X, y)
    assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3)
    assert clf_lda_svd.explained_variance_ratio_.shape == (2, ), (
        "Unexpected length for explained_variance_ratio_")

    assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_,
                              clf_lda_eigen.explained_variance_ratio_)
Ejemplo n.º 12
0
    X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

    # add non-discriminative features
    if n_features > 1:
        X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
    return X, y


acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
    score_clf1, score_clf2 = 0, 0
    for _ in range(n_averages):
        X, y = generate_data(n_train, n_features)

        clf1 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage='auto').fit(X, y)
        clf2 = LinearDiscriminantAnalysis(solver='lsqr',
                                          shrinkage=None).fit(X, y)

        X, y = generate_data(n_test, n_features)
        score_clf1 += clf1.score(X, y)
        score_clf2 += clf2.score(X, y)

    acc_clf1.append(score_clf1 / n_averages)
    acc_clf2.append(score_clf2 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio,
         acc_clf1,
         linewidth=2,
Ejemplo n.º 13
0
import matplotlib.pyplot as plt

from mrex import datasets
from mrex.decomposition import PCA
from mrex.discriminant_analysis import LinearDiscriminantAnalysis

iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)
X_r2 = lda.fit(X, y).transform(X)

# Percentage of variance explained for each components
print('explained variance ratio (first two components): %s' %
      str(pca.explained_variance_ratio_))

plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], target_names):
    plt.scatter(X_r[y == i, 0],
                X_r[y == i, 1],
                color=color,
                alpha=.8,
Ejemplo n.º 14
0
def test_lda_predict_proba(solver, n_classes):
    def generate_dataset(n_samples, centers, covariances, random_state=None):
        """Generate a multivariate normal data given some centers and
        covariances"""
        rng = check_random_state(random_state)
        X = np.vstack([
            rng.multivariate_normal(mean, cov, size=n_samples // len(centers))
            for mean, cov in zip(centers, covariances)
        ])
        y = np.hstack([[clazz] * (n_samples // len(centers))
                       for clazz in range(len(centers))])
        return X, y

    blob_centers = np.array([[0, 0], [-10, 40], [-30, 30]])[:n_classes]
    blob_stds = np.array([[[10, 10], [10, 100]]] * len(blob_centers))
    X, y = generate_dataset(n_samples=90000,
                            centers=blob_centers,
                            covariances=blob_stds,
                            random_state=42)
    lda = LinearDiscriminantAnalysis(solver=solver,
                                     store_covariance=True,
                                     shrinkage=None).fit(X, y)
    # check that the empirical means and covariances are close enough to the
    # one used to generate the data
    assert_allclose(lda.means_, blob_centers, atol=1e-1)
    assert_allclose(lda.covariance_, blob_stds[0], atol=1)

    # implement the method to compute the probability given in The Elements
    # of Statistical Learning (cf. p.127, Sect. 4.4.5 "Logistic Regression
    # or LDA?")
    precision = linalg.inv(blob_stds[0])
    alpha_k = []
    alpha_k_0 = []
    for clazz in range(len(blob_centers) - 1):
        alpha_k.append(
            np.dot(precision,
                   (blob_centers[clazz] - blob_centers[-1])[:, np.newaxis]))
        alpha_k_0.append(
            np.dot(
                -0.5 * (blob_centers[clazz] + blob_centers[-1])[np.newaxis, :],
                alpha_k[-1]))

    sample = np.array([[-22, 22]])

    def discriminant_func(sample, coef, intercept, clazz):
        return np.exp(intercept[clazz] + np.dot(sample, coef[clazz]))

    prob = np.array([
        float(
            discriminant_func(sample, alpha_k, alpha_k_0, clazz) / (1 + sum([
                discriminant_func(sample, alpha_k, alpha_k_0, clazz)
                for clazz in range(n_classes - 1)
            ]))) for clazz in range(n_classes - 1)
    ])

    prob_ref = 1 - np.sum(prob)

    # check the consistency of the computed probability
    # all probabilities should sum to one
    prob_ref_2 = float(1 / (1 + sum([
        discriminant_func(sample, alpha_k, alpha_k_0, clazz)
        for clazz in range(n_classes - 1)
    ])))

    assert prob_ref == pytest.approx(prob_ref_2)
    # check that the probability of LDA are close to the theoretical
    # probabilties
    assert_allclose(lda.predict_proba(sample),
                    np.hstack([prob, prob_ref])[np.newaxis],
                    atol=1e-2)
Ejemplo n.º 15
0
# Split into train/test
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.5, stratify=y,
                     random_state=random_state)

dim = len(X[0])
n_classes = len(np.unique(y))

# Reduce dimension to 2 with PCA
pca = make_pipeline(StandardScaler(),
                    PCA(n_components=2, random_state=random_state))

# Reduce dimension to 2 with LinearDiscriminantAnalysis
lda = make_pipeline(StandardScaler(),
                    LinearDiscriminantAnalysis(n_components=2))

# Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca = make_pipeline(StandardScaler(),
                    NeighborhoodComponentsAnalysis(n_components=2,
                                                   random_state=random_state))

# Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)

# Make a list of the methods to be compared
dim_reduction_methods = [('PCA', pca), ('LDA', lda), ('NCA', nca)]

# plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):
    plt.figure()
Ejemplo n.º 16
0
def test_lda_predict():
    # Test LDA classification.
    # This checks that LDA implements fit and predict and returns correct
    # values for simple toy data.
    for test_case in solver_shrinkage:
        solver, shrinkage = test_case
        clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage)
        y_pred = clf.fit(X, y).predict(X)
        assert_array_equal(y_pred, y, 'solver %s' % solver)

        # Assert that it works with 1D data
        y_pred1 = clf.fit(X1, y).predict(X1)
        assert_array_equal(y_pred1, y, 'solver %s' % solver)

        # Test probability estimates
        y_proba_pred1 = clf.predict_proba(X1)
        assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y,
                           'solver %s' % solver)
        y_log_proba_pred1 = clf.predict_log_proba(X1)
        assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8,
                                  'solver %s' % solver)

        # Primarily test for commit 2f34950 -- "reuse" of priors
        y_pred3 = clf.fit(X, y3).predict(X)
        # LDA shouldn't be able to separate those
        assert np.any(y_pred3 != y3), 'solver %s' % solver

    # Test invalid shrinkages
    clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231)
    assert_raises(ValueError, clf.fit, X, y)
    clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy")
    assert_raises(ValueError, clf.fit, X, y)
    clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto")
    assert_raises(NotImplementedError, clf.fit, X, y)
    # Test unknown solver
    clf = LinearDiscriminantAnalysis(solver="dummy")
    assert_raises(ValueError, clf.fit, X, y)
Ejemplo n.º 17
0
def test_lda_coefs():
    # Test if the coefficients of the solvers are approximately the same.
    n_features = 2
    n_classes = 2
    n_samples = 1000
    X, y = make_blobs(n_samples=n_samples,
                      n_features=n_features,
                      centers=n_classes,
                      random_state=11)

    clf_lda_svd = LinearDiscriminantAnalysis(solver="svd")
    clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr")
    clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen")

    clf_lda_svd.fit(X, y)
    clf_lda_lsqr.fit(X, y)
    clf_lda_eigen.fit(X, y)

    assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1)
    assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1)
    assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1)
Ejemplo n.º 18
0
def test_lda_dtype_match(data_type, expected_type):
    for (solver, shrinkage) in solver_shrinkage:
        clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage)
        clf.fit(X.astype(data_type), y.astype(data_type))
        assert clf.coef_.dtype == expected_type
Ejemplo n.º 19
0
    plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red')
    plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue')


def plot_qda_cov(qda, splot):
    plot_ellipse(splot, qda.means_[0], qda.covariance_[0], 'red')
    plot_ellipse(splot, qda.means_[1], qda.covariance_[1], 'blue')


plt.figure(figsize=(10, 8), facecolor='white')
plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis',
             y=0.98,
             fontsize=15)
for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):
    # Linear Discriminant Analysis
    lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
    y_pred = lda.fit(X, y).predict(X)
    splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
    plot_lda_cov(lda, splot)
    plt.axis('tight')

    # Quadratic Discriminant Analysis
    qda = QuadraticDiscriminantAnalysis(store_covariance=True)
    y_pred = qda.fit(X, y).predict(X)
    splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
    plot_qda_cov(qda, splot)
    plt.axis('tight')
plt.tight_layout()
plt.subplots_adjust(top=0.92)
plt.show()