Ejemplo n.º 1
0
def test_pipeline_methods_preprocessing_svm():
    # Test the various methods of the pipeline (preprocessing + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    n_samples = X.shape[0]
    n_classes = len(np.unique(y))
    scaler = StandardScaler()
    pca = PCA(n_components=2, svd_solver='randomized', whiten=True)
    clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')

    for preprocessing in [scaler, pca]:
        pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
        pipe.fit(X, y)

        # check shapes of various prediction functions
        predict = pipe.predict(X)
        assert predict.shape == (n_samples,)

        proba = pipe.predict_proba(X)
        assert proba.shape == (n_samples, n_classes)

        log_proba = pipe.predict_log_proba(X)
        assert log_proba.shape == (n_samples, n_classes)

        decision_function = pipe.decision_function(X)
        assert decision_function.shape == (n_samples, n_classes)

        pipe.score(X, y)
Ejemplo n.º 2
0
def test_pipeline_sample_weight_supported():
    # Pipeline should pass sample_weight
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, y=None) == 3
    assert pipe.score(X, y=None, sample_weight=None) == 3
    assert pipe.score(X, sample_weight=np.array([2, 3])) == 8
Ejemplo n.º 3
0
def test_pipeline_init_tuple():
    # Pipeline accepts steps as tuple
    X = np.array([[1, 2]])
    pipe = Pipeline((('transf', Transf()), ('clf', FitParamT())))
    pipe.fit(X, y=None)
    pipe.score(X)

    pipe.set_params(transf='passthrough')
    pipe.fit(X, y=None)
    pipe.score(X)
Ejemplo n.º 4
0
def test_pipeline_sample_weight_unsupported():
    # When sample_weight is None it shouldn't be passed
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', Mult())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, sample_weight=None) == 3
    assert_raise_message(
        TypeError,
        "score() got an unexpected keyword argument 'sample_weight'",
        pipe.score, X, sample_weight=np.array([2, 3])
    )
Ejemplo n.º 5
0
def test_pipeline_methods_pca_svm():
    # Test the various methods of the pipeline (pca + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with PCA + SVC
    clf = SVC(probability=True, random_state=0)
    pca = PCA(svd_solver='full', n_components='mle', whiten=True)
    pipe = Pipeline([('pca', pca), ('svc', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Ejemplo n.º 6
0
def test_pipeline_methods_anova():
    # Test the various methods of the pipeline (anova).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with Anova + LogisticRegression
    clf = LogisticRegression()
    filter1 = SelectKBest(f_classif, k=2)
    pipe = Pipeline([('anova', filter1), ('logistic', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Ejemplo n.º 7
0
def test_pipeline_memory():
    iris = load_iris()
    X = iris.data
    y = iris.target
    cachedir = mkdtemp()
    try:
        if LooseVersion(joblib.__version__) < LooseVersion('0.12'):
            # Deal with change of API in joblib
            memory = joblib.Memory(cachedir=cachedir, verbose=10)
        else:
            memory = joblib.Memory(location=cachedir, verbose=10)
        # Test with Transformer + SVC
        clf = SVC(probability=True, random_state=0)
        transf = DummyTransf()
        pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
        cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
                               memory=memory)

        # Memoize the transformer at the first fit
        cached_pipe.fit(X, y)
        pipe.fit(X, y)
        # Get the time stamp of the transformer in the cached pipeline
        ts = cached_pipe.named_steps['transf'].timestamp_
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert not hasattr(transf, 'means_')
        # Check that we are reading the cache while fitting
        # a second time
        cached_pipe.fit(X, y)
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert ts == cached_pipe.named_steps['transf'].timestamp_
        # Create a new pipeline with cloned estimators
        # Check that even changing the name step does not affect the cache hit
        clf_2 = SVC(probability=True, random_state=0)
        transf_2 = DummyTransf()
        cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
                                 memory=memory)
        cached_pipe_2.fit(X, y)

        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
        assert_array_equal(pipe.predict_proba(X),
                           cached_pipe_2.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe_2.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe_2.named_steps['transf_2'].means_)
        assert ts == cached_pipe_2.named_steps['transf_2'].timestamp_
    finally:
        shutil.rmtree(cachedir)
Ejemplo n.º 8
0
    steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')
            ), ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[(
    'num', numeric_transformer,
    numeric_features), ('cat', categorical_transformer, categorical_features)])

# Append classifier to preprocessing pipeline.
# Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor',
                       preprocessor), ('classifier', LogisticRegression())])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))

###############################################################################
# Using the prediction pipeline in a grid search
###############################################################################
# Grid search can also be performed on the different preprocessing steps
# defined in the ``ColumnTransformer`` object, together with the classifier's
# hyperparameters as part of the ``Pipeline``.
# We will search for both the imputer strategy of the numeric preprocessing
# and the regularization parameter of the logistic regression using
# :class:`mrex.model_selection.GridSearchCV`.

param_grid = {
    'preprocessor__num__imputer__strategy': ['mean', 'median'],
    'classifier__C': [0.1, 1.0, 10, 100],
}
Ejemplo n.º 9
0
#
# Here one can observe that the train accuracy is very high (the forest model
# has enough capacity to completely memorize the training set) but it can still
# generalize well enough to the test set thanks to the built-in bagging of
# random forests.
#
# It might be possible to trade some accuracy on the training set for a
# slightly better accuracy on the test set by limiting the capacity of the
# trees (for instance by setting ``min_samples_leaf=5`` or
# ``min_samples_leaf=10``) so as to limit overfitting while not introducing too
# much underfitting.
#
# However let's keep our high capacity random forest model for now so as to
# illustrate some pitfalls with feature importance on variables with many
# unique values.
print("RF train accuracy: %0.3f" % rf.score(X_train, y_train))
print("RF test accuracy: %0.3f" % rf.score(X_test, y_test))

##############################################################################
# Tree's Feature Importance from Mean Decrease in Impurity (MDI)
# --------------------------------------------------------------
# The impurity-based feature importance ranks the numerical features to be the
# most important features. As a result, the non-predictive ``random_num``
# variable is ranked the most important!
#
# This problem stems from two limitations of impurity-based feature
# importances:
#
# - impurity-based importances are biased towards high cardinality features;
# - impurity-based importances are computed on training set statistics and
#   therefore do not reflect the ability of feature to be useful to make