Ejemplo n.º 1
0
def make_hdiag_csf(h1e,
                   eri,
                   norb,
                   nelec,
                   smult,
                   csd_mask=None,
                   hdiag_det=None):
    if hdiag_det is None:
        hdiag_det = make_hdiag_det(h1e, eri, norb, nelec)
    eri = ao2mo.restore(1, eri, norb)
    tlib = wlib = 0
    neleca, nelecb = _unpack_nelec(nelec)
    min_npair, npair_csd_offset, npair_dconf_size, npair_sconf_size, npair_sdet_size = get_csdaddrs_shape(
        norb, neleca, nelecb)
    _, npair_csf_offset, _, _, npair_csf_size = get_csfvec_shape(
        norb, neleca, nelecb, smult)
    npair_econf_size = npair_dconf_size * npair_sconf_size
    max_npair = nelecb
    ncsf_all = count_all_csfs(norb, neleca, nelecb, smult)
    ndeta_all = cistring.num_strings(norb, neleca)
    ndetb_all = cistring.num_strings(norb, nelecb)
    ndet_all = ndeta_all * ndetb_all
    hdiag_csf = np.ascontiguousarray(np.zeros(ncsf_all, dtype=np.float64))
    hdiag_csf_check = np.ones(ncsf_all, dtype=np.bool)
    for npair in range(min_npair, max_npair + 1):
        ipair = npair - min_npair
        nconf = npair_econf_size[ipair]
        ndet = npair_sdet_size[ipair]
        ncsf = npair_csf_size[ipair]
        if ncsf == 0:
            continue
        nspin = neleca + nelecb - 2 * npair
        csd_offset = npair_csd_offset[ipair]
        csf_offset = npair_csf_offset[ipair]
        hdiag_conf = np.ascontiguousarray(
            np.zeros((nconf, ndet, ndet), dtype=np.float64))
        if csd_mask is None:
            det_addr = get_nspin_dets(norb, neleca, nelecb,
                                      nspin).ravel(order='C')
        else:
            det_addr = csd_mask[csd_offset:][:nconf * ndet]
        if ndet == 1:
            # Closed-shell singlets
            assert (ncsf == 1)
            hdiag_csf[csf_offset:][:nconf] = hdiag_det[det_addr.flat]
            hdiag_csf_check[csf_offset:][:nconf] = False
            continue
        det_addra, det_addrb = divmod(det_addr, ndetb_all)
        det_stra = np.ascontiguousarray(
            cistring.addrs2str(norb, neleca, det_addra).reshape(nconf,
                                                                ndet,
                                                                order='C'))
        det_strb = np.ascontiguousarray(
            cistring.addrs2str(norb, nelecb, det_addrb).reshape(nconf,
                                                                ndet,
                                                                order='C'))
        det_addr = det_addr.reshape(nconf, ndet, order='C')
        hdiag_conf = np.ascontiguousarray(
            np.zeros((nconf, ndet, ndet), dtype=np.float64))
        hdiag_conf_det = np.ascontiguousarray(hdiag_det[det_addr],
                                              dtype=np.float64)
        t1 = time.clock()
        w1 = time.time()
        libcsf.FCICSFhdiag(hdiag_conf.ctypes.data_as(ctypes.c_void_p),
                           hdiag_conf_det.ctypes.data_as(ctypes.c_void_p),
                           eri.ctypes.data_as(ctypes.c_void_p),
                           det_stra.ctypes.data_as(ctypes.c_void_p),
                           det_strb.ctypes.data_as(ctypes.c_void_p),
                           ctypes.c_uint(norb), ctypes.c_uint(nconf),
                           ctypes.c_uint(ndet))
        tlib += time.clock() - t1
        wlib += time.time() - w1
        umat = get_spin_evecs(nspin, neleca, nelecb, smult)
        hdiag_conf = np.tensordot(hdiag_conf, umat, axes=1)
        hdiag_conf *= umat[np.newaxis, :, :]
        hdiag_csf[csf_offset:][:nconf *
                               ncsf] = hdiag_conf.sum(1).ravel(order='C')
        hdiag_csf_check[csf_offset:][:nconf * ncsf] = False
    assert (np.count_nonzero(hdiag_csf_check) == 0
            ), np.count_nonzero(hdiag_csf_check)
    #print ("Time in hdiag_csf library: {}, {}".format (tlib, wlib))
    return hdiag_csf
Ejemplo n.º 2
0
def _transform_det2csf (inparr, norb, neleca, nelecb, smult, reverse=False, csd_mask=None, project=False):
    ''' Must take an array of shape (*, ndet) or (*, ncsf) '''
    t_start = time.time ()
    time_umat = 0
    time_mult = 0
    time_getdet = 0
    size_umat = 0
    s = (smult - 1) / 2
    ms = (neleca - nelecb) / 2

    min_npair, npair_csd_offset, npair_dconf_size, npair_sconf_size, npair_sdet_size = csdstring.get_csdaddrs_shape (norb, neleca, nelecb)
    _, npair_csf_offset, _, _, npair_csf_size = get_csfvec_shape (norb, neleca, nelecb, smult)
    nrow = inparr.shape[0]
    ndeta_all = special.comb (norb, neleca, exact=True)
    ndetb_all = special.comb (norb, nelecb, exact=True)
    ndet_all = ndeta_all * ndetb_all
    ncsf_all = count_all_csfs (norb, neleca, nelecb, smult)

    ncol_out = (ncsf_all, ndet_all)[reverse or project]
    ncol_in = (ncsf_all, ndet_all)[~reverse or project]
    if not project:
        outarr = np.ascontiguousarray (np.zeros ((nrow, ncol_out), dtype=np.float_))
        csf_addrs = np.zeros (ncsf_all, dtype=np.bool_)
    # Initialization is necessary because not all determinants have a csf for all spin states

    #max_npair = min (nelecb, (neleca + nelecb - int (round (2*s))) // 2)
    max_npair = min (neleca, nelecb)
    for npair in range (min_npair, max_npair+1):
        ipair = npair - min_npair
        ncsf = npair_csf_size[ipair]
        nspin = neleca + nelecb - 2*npair
        nconf = npair_dconf_size[ipair] * npair_sconf_size[ipair]
        ndet = npair_sdet_size[ipair]
        csf_offset = npair_csf_offset[ipair]
        csd_offset = npair_csd_offset[ipair]
        if (ncsf == 0) and not project:
            continue
        if not project:
            csf_addrs[:] = False
            csf_addrs_ipair = csf_addrs[csf_offset:][:nconf*ncsf].reshape (nconf, ncsf) # Note: this is a view, i.e., a pointer

        t_ref = time.time ()
        if csd_mask is None:
            det_addrs = csdstring.get_nspin_dets (norb, neleca, nelecb, nspin)
        else:
            det_addrs = csd_mask[csd_offset:][:nconf*ndet].reshape (nconf, ndet, order='C')
        assert (det_addrs.shape[0] == nconf)
        assert (det_addrs.shape[1] == ndet)
        time_getdet += time.time () - t_ref

        if (ncsf == 0):
            inparr[:,det_addrs] = 0 
            continue

        t_ref = time.time ()
        umat = np.asarray_chkfinite (get_spin_evecs (nspin, neleca, nelecb, smult))
        size_umat = max (size_umat, umat.nbytes)
        ncsf_blk = ncsf # later on I can use this variable to implement a generator form of get_spin_evecs to save memory when there are too many csfs
        assert (umat.shape[0] == ndet)
        assert (umat.shape[1] == ncsf_blk)
        if project:
            Pmat = np.dot (umat, umat.T)
        time_umat += time.time () - t_ref

        if not project:
            csf_addrs_ipair[:,:ncsf_blk] = True # Note: edits csf_addrs

        # The elements of csf_addrs and det_addrs are addresses for the flattened vectors and matrices (inparr.flat and outarr.flat)
        # Passing them unflattened as indices of the flattened arrays should result in a 3-dimensional array if I understand numpy's indexing rules correctly
        # For the lvalues, I think it's necessary to flatten csf_addrs and det_addrs to avoid an exception
        # Hopefully this is parallel under the hood, and hopefully the OpenMP reduction epsilon doesn't ruin the spin eigenvectors
        t_ref = time.time ()
        if project:
            inparr[:,det_addrs] = np.tensordot (inparr[:,det_addrs], Pmat, axes=1)
        elif not reverse:
            outarr[:,csf_addrs] = np.tensordot (inparr[:,det_addrs], umat, axes=1).reshape (nrow, ncsf_blk*nconf)
        else:
            outarr[:,det_addrs] = np.tensordot (inparr[:,csf_addrs].reshape (nrow, nconf, ncsf_blk), umat, axes=((2,),(1,)))
        time_mult += time.time () - t_ref

    if project:
        outarr = inparr
    else:
        outarr = outarr.reshape (nrow, ncol_out)
    d = ['determinants','csfs']
    '''
    print (('Transforming {} into {} summary: {:.2f} seconds to get determinants,'
            ' {:.2f} seconds to build umat, {:.2f} seconds matrix-vector multiplication,            ' {:.2f} MB largest umat').format (d[reverse], d[~reverse], time_getdet, time_umat,
            ' {:.2f} MB largest umat').format (d[reverse], d[~reverse], time_getdet, time_umat,
            time_mult, size_umat / 1e6))
    print ('Total time spend in _transform_det2csf: {:.2f} seconds'.format (time.time () - t_start))
    '''
    return outarr
Ejemplo n.º 3
0
def make_hdiag_csf_slower(h1e,
                          eri,
                          norb,
                          nelec,
                          smult,
                          csd_mask=None,
                          hdiag_det=None):
    ''' This is tricky because I need the diagonal blocks for each configuration in order to get
    the correct csf hdiag values, not just the diagonal elements for each determinant. '''
    t0, w0 = time.clock(), time.time()
    tstr = tlib = tloop = wstr = wlib = wloop = 0
    if hdiag_det is None:
        hdiag_det = make_hdiag_det(h1e, eri, norb, nelec)
    eri = ao2mo.restore(1, eri, norb)
    neleca, nelecb = _unpack_nelec(nelec)
    min_npair, npair_csd_offset, npair_dconf_size, npair_sconf_size, npair_sdet_size = get_csdaddrs_shape(
        norb, neleca, nelecb)
    _, npair_csf_offset, _, _, npair_csf_size = get_csfvec_shape(
        norb, neleca, nelecb, smult)
    npair_econf_size = npair_dconf_size * npair_sconf_size
    max_npair = nelecb
    ncsf_all = count_all_csfs(norb, neleca, nelecb, smult)
    ndeta_all = cistring.num_strings(norb, neleca)
    ndetb_all = cistring.num_strings(norb, nelecb)
    ndet_all = ndeta_all * ndetb_all
    hdiag_csf = np.ascontiguousarray(np.zeros(ncsf_all, dtype=np.float64))
    hdiag_csf_check = np.ones(ncsf_all, dtype=np.bool)
    for npair in range(min_npair, max_npair + 1):
        ipair = npair - min_npair
        nconf = npair_econf_size[ipair]
        ndet = npair_sdet_size[ipair]
        ncsf = npair_csf_size[ipair]
        if ncsf == 0:
            continue
        nspin = neleca + nelecb - 2 * npair
        csd_offset = npair_csd_offset[ipair]
        csf_offset = npair_csf_offset[ipair]
        hdiag_conf = np.ascontiguousarray(
            np.zeros((nconf, ndet, ndet), dtype=np.float64))
        if csd_mask is None:
            det_addr = get_nspin_dets(norb, neleca, nelecb,
                                      nspin).ravel(order='C')
        else:
            det_addr = csd_mask[csd_offset:][:nconf * ndet]
        if ndet == 1:
            # Closed-shell singlets
            assert (ncsf == 1)
            hdiag_csf[csf_offset:][:nconf] = hdiag_det[det_addr.flat]
            hdiag_csf_check[csf_offset:][:nconf] = False
            continue
        umat = get_spin_evecs(nspin, neleca, nelecb, smult)
        det_addra, det_addrb = divmod(det_addr, ndetb_all)
        t1, w1 = time.clock(), time.time()
        det_stra = cistring.addrs2str(norb, neleca,
                                      det_addra).reshape(nconf,
                                                         ndet,
                                                         order='C')
        det_strb = cistring.addrs2str(norb, nelecb,
                                      det_addrb).reshape(nconf,
                                                         ndet,
                                                         order='C')
        tstr += time.clock() - t1
        wstr += time.time() - w1
        det_addr = det_addr.reshape(nconf, ndet, order='C')
        diag_idx = np.diag_indices(ndet)
        triu_idx = np.triu_indices(ndet)
        ipair_check = 0
        # It looks like the library call below is, itself, usually responsible for about 50% of the
        # clock and wall time that this function consumes.
        t1, w1 = time.clock(), time.time()
        for iconf in range(nconf):
            addr = det_addr[iconf]
            assert (len(addr) == ndet)
            stra = det_stra[iconf]
            strb = det_strb[iconf]
            t2, w2 = time.clock(), time.time()
            libfci.FCIpspace_h0tril(
                hdiag_conf[iconf].ctypes.data_as(ctypes.c_void_p),
                h1e.ctypes.data_as(ctypes.c_void_p),
                eri.ctypes.data_as(ctypes.c_void_p),
                stra.ctypes.data_as(ctypes.c_void_p),
                strb.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(norb),
                ctypes.c_int(ndet))
            tlib += time.clock() - t2
            wlib += time.time() - w2
            #hdiag_conf[iconf][diag_idx] = hdiag_det[addr]
            #hdiag_conf[iconf] = lib.hermi_triu(hdiag_conf[iconf])
        for iconf in range(nconf):
            hdiag_conf[iconf] = lib.hermi_triu(hdiag_conf[iconf])
        for iconf in range(nconf):
            hdiag_conf[iconf][diag_idx] = hdiag_det[det_addr[iconf]]
        tloop += time.clock() - t1
        wloop += time.time() - w1

        hdiag_conf = np.tensordot(hdiag_conf, umat, axes=1)
        hdiag_conf = (hdiag_conf * umat[np.newaxis, :, :]).sum(1)
        hdiag_csf[csf_offset:][:nconf * ncsf] = hdiag_conf.ravel(order='C')
        hdiag_csf_check[csf_offset:][:nconf * ncsf] = False
    assert (np.count_nonzero(hdiag_csf_check) == 0
            ), np.count_nonzero(hdiag_csf_check)
    #print ("Total time in hdiag_csf: {}, {}".format (time.clock () - t0, time.time () - w0))
    #print ("    Loop: {}, {}".format (tloop, wloop))
    #print ("    Library: {}, {}".format (tlib, wlib))
    #print ("    Cistring: {}, {}".format (tstr, wstr))
    return hdiag_csf