def execute(): #pylint: disable=unused-variable lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax if app.ARGS.max_iters < 2: raise MRtrixError('Number of iterations must be at least 2') progress = app.ProgressBar('Optimising') iter_voxels = app.ARGS.iter_voxels if iter_voxels == 0: iter_voxels = 10 * app.ARGS.number elif iter_voxels < app.ARGS.number: raise MRtrixError( 'Number of selected voxels (-iter_voxels) must be greater than number of voxels desired (-number)' ) iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_rf = '1 -1 1' with open(rf_in_path, 'w') as init_rf_file: init_rf_file.write(init_rf) iter_lmax_option = ' -lmax 4' else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') if iteration: app.cleanup(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif none ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2peaks ' + prefix + 'fixel/directions.mif ' + prefix + 'first_dir.mif -number 1') app.cleanup(prefix + 'fixel') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') voxel_count = image.statistics(prefix + 'CF.mif').count # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([app.ARGS.number, voxel_count])) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') app.cleanup('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistics(prefix + 'SF_diff.mif').max app.cleanup(prefix + 'SF_diff.mif') if not max_diff: app.cleanup(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([iter_voxels, voxel_count])) + ' - | maskfilter - dilate - -npass ' + str(app.ARGS.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') app.cleanup(prefix + 'CF.mif') iteration += 1 progress.done() # If terminating due to running out of iterations, still need to put the results in the appropriate location if os.path.exists('response.txt'): app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration + 1)) else: app.console('Exiting after maximum ' + str(app.ARGS.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)
def execute(): #pylint: disable=unused-variable import math, os, shutil from mrtrix3 import app, image, matrix, MRtrixError, path, run lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax convergence_change = 0.01 * app.ARGS.convergence progress = app.ProgressBar('Optimising') iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # Grab the mean and standard deviation across all volumes in a single mrstats call # Also scale them to reflect the fact that we're moving to the SH basis mean = image.statistic('dwi.mif', 'mean', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) std = image.statistic('dwi.mif', 'std', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_rf = [ str(mean), str(-0.5 * std), str(0.25 * std * std / mean) ] with open('init_RF.txt', 'w') as init_rf_file: init_rf_file.write(' '.join(init_rf)) else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif') app.cleanup(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') app.cleanup(prefix + 'all_dirs.mif') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.ARGS.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') app.cleanup(prefix + 'peak_ratio.mif') # Make sure image isn't empty sf_voxel_count = image.statistic(prefix + 'SF.mif', 'count', '-mask ' + prefix + 'SF.mif') if not sf_voxel_count: raise MRtrixError( 'Aborting: All voxels have been excluded from single-fibre selection' ) # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, ' + str(sf_voxel_count) + ' voxels, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: old_rf = matrix.load_vector(rf_in_path) reiterate = False for old_value, new_value in zip(old_rf, new_rf): mean = 0.5 * (old_value + new_value) diff = math.fabs(0.5 * (old_value - new_value)) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break app.cleanup(rf_in_path) app.cleanup(mask_in_path) iteration += 1 progress.done() # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if os.path.exists('response.txt'): app.console('Exited at iteration ' + str(iteration + 1) + ' with ' + str(sf_voxel_count) + ' SF voxels due to unchanged RF coefficients') else: app.console('Exited after maximum ' + str(app.ARGS.max_iters) + ' iterations with ' + str(sf_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE)
def execute(): #pylint: disable=unused-variable subject_dir = os.path.abspath(path.from_user(app.ARGS.input, False)) if not os.path.isdir(subject_dir): raise MRtrixError('Input to hsvs algorithm must be a directory') surf_dir = os.path.join(subject_dir, 'surf') mri_dir = os.path.join(subject_dir, 'mri') check_dir(surf_dir) check_dir(mri_dir) #aparc_image = os.path.join(mri_dir, 'aparc+aseg.mgz') aparc_image = 'aparc.mif' mask_image = os.path.join(mri_dir, 'brainmask.mgz') reg_file = os.path.join(mri_dir, 'transforms', 'talairach.xfm') check_file(aparc_image) check_file(mask_image) check_file(reg_file) template_image = 'template.mif' if app.ARGS.template else aparc_image have_first = False have_fast = False fsl_path = os.environ.get('FSLDIR', '') if fsl_path: # Use brain-extracted, bias-corrected image for FSL tools norm_image = os.path.join(mri_dir, 'norm.mgz') check_file(norm_image) run.command('mrconvert ' + norm_image + ' T1.nii -stride -1,+2,+3') # Verify FAST availability try: fast_cmd = fsl.exe_name('fast') except MRtrixError: fast_cmd = None if fast_cmd: have_fast = True if fast_cmd == 'fast': fast_suffix = fsl.suffix() else: fast_suffix = '.nii.gz' else: app.warn('Could not find FSL program fast; script will not use fast for cerebellar tissue segmentation') # Verify FIRST availability try: first_cmd = fsl.exe_name('run_first_all') except MRtrixError: first_cmd = None first_atlas_path = os.path.join(fsl_path, 'data', 'first', 'models_336_bin') have_first = first_cmd and os.path.isdir(first_atlas_path) else: app.warn('Environment variable FSLDIR is not set; script will run without FSL components') acpc_string = 'anterior ' + ('& posterior commissures' if ATTEMPT_PC else 'commissure') have_acpcdetect = bool(find_executable('acpcdetect')) and 'ARTHOME' in os.environ if have_acpcdetect: if have_fast: app.console('ACPCdetect and FSL FAST will be used for explicit segmentation of ' + acpc_string) else: app.warn('ACPCdetect is installed, but FSL FAST not found; cannot segment ' + acpc_string) have_acpcdetect = False else: app.warn('ACPCdetect not installed; cannot segment ' + acpc_string) # Need to perform a better search for hippocampal subfield output: names & version numbers may change have_hipp_subfields = False hipp_subfield_has_amyg = False # Could result in multiple matches hipp_subfield_regex = re.compile(r'^[lr]h\.hippo[a-zA-Z]*Labels-[a-zA-Z0-9]*\.v[0-9]+\.?[a-zA-Z0-9]*\.mg[hz]$') hipp_subfield_all_images = sorted(list(filter(hipp_subfield_regex.match, os.listdir(mri_dir)))) # Remove any images that provide segmentations in FreeSurfer voxel space; we want the high-resolution versions hipp_subfield_all_images = [ item for item in hipp_subfield_all_images if 'FSvoxelSpace' not in item ] # Arrange the images into lr pairs hipp_subfield_paired_images = [ ] for lh_filename in [ item for item in hipp_subfield_all_images if item[0] == 'l' ]: if 'r' + lh_filename[1:] in hipp_subfield_all_images: hipp_subfield_paired_images.append(lh_filename[1:]) # Choose which of these image pairs we are going to use for code in [ '.CA.', '.FS60.' ]: if any(code in filename for filename in hipp_subfield_paired_images): hipp_subfield_image_suffix = [ filename for filename in hipp_subfield_paired_images if code in filename ][0] have_hipp_subfields = True break # Choose the pair with the shortest filename string if we have no other criteria if not have_hipp_subfields and hipp_subfield_paired_images: hipp_subfield_paired_images = sorted(hipp_subfield_paired_images, key=len) if hipp_subfield_paired_images: hipp_subfield_image_suffix = hipp_subfield_paired_images[0] have_hipp_subfields = True if have_hipp_subfields: hipp_subfield_has_amyg = 'Amyg' in hipp_subfield_image_suffix # Perform a similar search for thalamic nuclei submodule output thal_nuclei_image = None thal_nuclei_regex = re.compile(r'^ThalamicNuclei\.v[0-9]+\.?[a-zA-Z0-9]*.mg[hz]$') thal_nuclei_all_images = sorted(list(filter(thal_nuclei_regex.match, os.listdir(mri_dir)))) thal_nuclei_all_images = [ item for item in thal_nuclei_all_images if 'FSvoxelSpace' not in item ] if thal_nuclei_all_images: if len(thal_nuclei_all_images) == 1: thal_nuclei_image = thal_nuclei_all_images[0] else: # How to choose which version to use? # Start with software version thal_nuclei_versions = [ int(item.split('.')[1].lstrip('v')) for item in thal_nuclei_all_images ] thal_nuclei_all_images = [ filepath for filepath, version_number in zip(thal_nuclei_all_images, thal_nuclei_versions) if version_number == max(thal_nuclei_versions) ] if len(thal_nuclei_all_images) == 1: thal_nuclei_image = thal_nuclei_all_images[0] else: # Revert to filename length thal_nuclei_all_images = sorted(thal_nuclei_all_images, key=len) thal_nuclei_image = thal_nuclei_all_images[0] # If particular hippocampal segmentation method is requested, make sure we can perform such; # if not, decide how to segment hippocampus based on what's available hippocampi_method = app.ARGS.hippocampi if hippocampi_method: if hippocampi_method == 'subfields': if not have_hipp_subfields: raise MRtrixError('Could not isolate hippocampal subfields module output (candidate images: ' + str(hipp_subfield_all_images) + ')') elif hippocampi_method == 'first': if not have_first: raise MRtrixError('Cannot use "first" method for hippocampi segmentation; check FSL installation') else: if have_hipp_subfields: hippocampi_method = 'subfields' app.console('Hippocampal subfields module output detected; will utilise for hippocampi ' + ('and amygdalae ' if hipp_subfield_has_amyg else '') + 'segmentation') elif have_first: hippocampi_method = 'first' app.console('No hippocampal subfields module output detected, but FSL FIRST is installed; ' 'will utilise latter for hippocampi segmentation') else: hippocampi_method = 'aseg' app.console('Neither hippocampal subfields module output nor FSL FIRST detected; ' 'FreeSurfer aseg will be used for hippocampi segmentation') if hippocampi_method == 'subfields': if 'FREESURFER_HOME' not in os.environ: raise MRtrixError('FREESURFER_HOME environment variable not set; required for use of hippocampal subfields module') freesurfer_lut_file = os.path.join(os.environ['FREESURFER_HOME'], 'FreeSurferColorLUT.txt') check_file(freesurfer_lut_file) hipp_lut_file = os.path.join(path.shared_data_path(), path.script_subdir_name(), 'hsvs', 'HippSubfields.txt') check_file(hipp_lut_file) if hipp_subfield_has_amyg: amyg_lut_file = os.path.join(path.shared_data_path(), path.script_subdir_name(), 'hsvs', 'AmygSubfields.txt') check_file(amyg_lut_file) if app.ARGS.sgm_amyg_hipp: app.warn('Option -sgm_amyg_hipp ignored ' '(hsvs algorithm always assigns hippocampi & ampygdalae as sub-cortical grey matter)') # Similar logic for thalami thalami_method = app.ARGS.thalami if thalami_method: if thalami_method == 'nuclei': if not thal_nuclei_image: raise MRtrixError('Could not find thalamic nuclei module output') elif thalami_method == 'first': if not have_first: raise MRtrixError('Cannot use "first" method for thalami segmentation; check FSL installation') else: # Not happy with outputs of thalamic nuclei submodule; default to FIRST if have_first: thalami_method = 'first' if thal_nuclei_image: app.console('Thalamic nuclei submodule output ignored in favour of FSL FIRST ' '(can override using -thalami option)') else: app.console('Will utilise FSL FIRST for thalami segmentation') elif thal_nuclei_image: thalami_method = 'nuclei' app.console('Will utilise detected thalamic nuclei submodule output') else: thalami_method = 'aseg' app.console('Neither thalamic nuclei module output nor FSL FIRST detected; ' 'FreeSurfer aseg will be used for thalami segmentation') ########################### # Commencing segmentation # ########################### tissue_images = [ [ 'lh.pial.mif', 'rh.pial.mif' ], [], [ 'lh.white.mif', 'rh.white.mif' ], [], [] ] # Get the main cerebrum segments; these are already smooth progress = app.ProgressBar('Mapping FreeSurfer cortical reconstruction to partial volume images', 8) for hemi in [ 'lh', 'rh' ]: for basename in [ hemi+'.white', hemi+'.pial' ]: filepath = os.path.join(surf_dir, basename) check_file(filepath) transformed_path = basename + '_realspace.obj' run.command('meshconvert ' + filepath + ' ' + transformed_path + ' -binary -transform fs2real ' + aparc_image) progress.increment() run.command('mesh2voxel ' + transformed_path + ' ' + template_image + ' ' + basename + '.mif') app.cleanup(transformed_path) progress.increment() progress.done() # Get other structures that need to be converted from the aseg voxel image from_aseg = list(ASEG_STRUCTURES) if hippocampi_method == 'subfields': if not hipp_subfield_has_amyg and not have_first: from_aseg.extend(AMYG_ASEG) elif hippocampi_method == 'aseg': from_aseg.extend(HIPP_ASEG) from_aseg.extend(AMYG_ASEG) if thalami_method == 'aseg': from_aseg.extend(THAL_ASEG) if not have_first: from_aseg.extend(OTHER_SGM_ASEG) progress = app.ProgressBar('Smoothing non-cortical structures segmented by FreeSurfer', len(from_aseg) + 2) for (index, tissue, name) in from_aseg: init_mesh_path = name + '_init.vtk' smoothed_mesh_path = name + '.vtk' run.command('mrcalc ' + aparc_image + ' ' + str(index) + ' -eq - | voxel2mesh - -threshold 0.5 ' + init_mesh_path) run.command('meshfilter ' + init_mesh_path + ' smooth ' + smoothed_mesh_path) app.cleanup(init_mesh_path) run.command('mesh2voxel ' + smoothed_mesh_path + ' ' + template_image + ' ' + name + '.mif') app.cleanup(smoothed_mesh_path) tissue_images[tissue-1].append(name + '.mif') progress.increment() # Lateral ventricles are separate as we want to combine with choroid plexus prior to mesh conversion for hemi_index, hemi_name in enumerate(['Left', 'Right']): name = hemi_name + '_LatVent_ChorPlex' init_mesh_path = name + '_init.vtk' smoothed_mesh_path = name + '.vtk' run.command('mrcalc ' + ' '.join(aparc_image + ' ' + str(index) + ' -eq' for index, tissue, name in VENTRICLE_CP_ASEG[hemi_index]) + ' -add - | ' + 'voxel2mesh - -threshold 0.5 ' + init_mesh_path) run.command('meshfilter ' + init_mesh_path + ' smooth ' + smoothed_mesh_path) app.cleanup(init_mesh_path) run.command('mesh2voxel ' + smoothed_mesh_path + ' ' + template_image + ' ' + name + '.mif') app.cleanup(smoothed_mesh_path) tissue_images[3].append(name + '.mif') progress.increment() progress.done() # Combine corpus callosum segments before smoothing progress = app.ProgressBar('Combining and smoothing corpus callosum segmentation', len(CORPUS_CALLOSUM_ASEG) + 3) for (index, name) in CORPUS_CALLOSUM_ASEG: run.command('mrcalc ' + aparc_image + ' ' + str(index) + ' -eq ' + name + '.mif -datatype bit') progress.increment() cc_init_mesh_path = 'combined_corpus_callosum_init.vtk' cc_smoothed_mesh_path = 'combined_corpus_callosum.vtk' run.command('mrmath ' + ' '.join([ name + '.mif' for (index, name) in CORPUS_CALLOSUM_ASEG ]) + ' sum - | voxel2mesh - -threshold 0.5 ' + cc_init_mesh_path) for name in [ n for _, n in CORPUS_CALLOSUM_ASEG ]: app.cleanup(name + '.mif') progress.increment() run.command('meshfilter ' + cc_init_mesh_path + ' smooth ' + cc_smoothed_mesh_path) app.cleanup(cc_init_mesh_path) progress.increment() run.command('mesh2voxel ' + cc_smoothed_mesh_path + ' ' + template_image + ' combined_corpus_callosum.mif') app.cleanup(cc_smoothed_mesh_path) progress.done() tissue_images[2].append('combined_corpus_callosum.mif') # Deal with brain stem, including determining those voxels that should # be erased from the 5TT image in order for streamlines traversing down # the spinal column to be terminated & accepted bs_fullmask_path = 'brain_stem_init.mif' bs_cropmask_path = '' progress = app.ProgressBar('Segmenting and cropping brain stem', 5) run.command('mrcalc ' + aparc_image + ' ' + str(BRAIN_STEM_ASEG[0][0]) + ' -eq ' + ' -add '.join([ aparc_image + ' ' + str(index) + ' -eq' for index, name in BRAIN_STEM_ASEG[1:] ]) + ' -add ' + bs_fullmask_path + ' -datatype bit') progress.increment() bs_init_mesh_path = 'brain_stem_init.vtk' run.command('voxel2mesh ' + bs_fullmask_path + ' ' + bs_init_mesh_path) progress.increment() bs_smoothed_mesh_path = 'brain_stem.vtk' run.command('meshfilter ' + bs_init_mesh_path + ' smooth ' + bs_smoothed_mesh_path) app.cleanup(bs_init_mesh_path) progress.increment() run.command('mesh2voxel ' + bs_smoothed_mesh_path + ' ' + template_image + ' brain_stem.mif') app.cleanup(bs_smoothed_mesh_path) progress.increment() fourthventricle_zmin = min([ int(line.split()[2]) for line in run.command('maskdump 4th-Ventricle.mif')[0].splitlines() ]) if fourthventricle_zmin: bs_cropmask_path = 'brain_stem_crop.mif' run.command('mredit brain_stem.mif - ' + ' '.join([ '-plane 2 ' + str(index) + ' 0' for index in range(0, fourthventricle_zmin) ]) + ' | ' 'mrcalc brain_stem.mif - -sub 1e-6 -gt ' + bs_cropmask_path + ' -datatype bit') app.cleanup(bs_fullmask_path) progress.done() if hippocampi_method == 'subfields': progress = app.ProgressBar('Using detected FreeSurfer hippocampal subfields module output', 64 if hipp_subfield_has_amyg else 32) subfields = [ ( hipp_lut_file, 'hipp' ) ] if hipp_subfield_has_amyg: subfields.append(( amyg_lut_file, 'amyg' )) for subfields_lut_file, structure_name in subfields: for hemi, filename in zip([ 'Left', 'Right'], [ prefix + hipp_subfield_image_suffix for prefix in [ 'l', 'r' ] ]): # Extract individual components from image and assign to different tissues subfields_all_tissues_image = hemi + '_' + structure_name + '_subfields.mif' run.command('labelconvert ' + os.path.join(mri_dir, filename) + ' ' + freesurfer_lut_file + ' ' + subfields_lut_file + ' ' + subfields_all_tissues_image) progress.increment() for tissue in range(0, 5): init_mesh_path = hemi + '_' + structure_name + '_subfield_' + str(tissue) + '_init.vtk' smooth_mesh_path = hemi + '_' + structure_name + '_subfield_' + str(tissue) + '.vtk' subfield_tissue_image = hemi + '_' + structure_name + '_subfield_' + str(tissue) + '.mif' run.command('mrcalc ' + subfields_all_tissues_image + ' ' + str(tissue+1) + ' -eq - | ' + \ 'voxel2mesh - ' + init_mesh_path) progress.increment() # Since the hippocampal subfields segmentation can include some fine structures, reduce the extent of smoothing run.command('meshfilter ' + init_mesh_path + ' smooth ' + smooth_mesh_path + ' -smooth_spatial 2 -smooth_influence 2') app.cleanup(init_mesh_path) progress.increment() run.command('mesh2voxel ' + smooth_mesh_path + ' ' + template_image + ' ' + subfield_tissue_image) app.cleanup(smooth_mesh_path) progress.increment() tissue_images[tissue].append(subfield_tissue_image) app.cleanup(subfields_all_tissues_image) progress.done() if thalami_method == 'nuclei': progress = app.ProgressBar('Using detected FreeSurfer thalamic nuclei module output', 6) for hemi in ['Left', 'Right']: thal_mask_path = hemi + '_Thalamus_mask.mif' init_mesh_path = hemi + '_Thalamus_init.vtk' smooth_mesh_path = hemi + '_Thalamus.vtk' thalamus_image = hemi + '_Thalamus.mif' if hemi == 'Right': run.command('mrthreshold ' + os.path.join(mri_dir, thal_nuclei_image) + ' -abs 8200 ' + thal_mask_path) else: run.command('mrcalc ' + os.path.join(mri_dir, thal_nuclei_image) + ' 0 -gt ' + os.path.join(mri_dir, thal_nuclei_image) + ' 8200 -lt ' + '-mult ' + thal_mask_path) run.command('voxel2mesh ' + thal_mask_path + ' ' + init_mesh_path) app.cleanup(thal_mask_path) progress.increment() run.command('meshfilter ' + init_mesh_path + ' smooth ' + smooth_mesh_path + ' -smooth_spatial 2 -smooth_influence 2') app.cleanup(init_mesh_path) progress.increment() run.command('mesh2voxel ' + smooth_mesh_path + ' ' + template_image + ' ' + thalamus_image) app.cleanup(smooth_mesh_path) progress.increment() tissue_images[1].append(thalamus_image) progress.done() if have_first: app.console('Running FSL FIRST to segment sub-cortical grey matter structures') from_first = SGM_FIRST_MAP.copy() if hippocampi_method == 'subfields': from_first = { key: value for key, value in from_first.items() if 'Hippocampus' not in value } if hipp_subfield_has_amyg: from_first = { key: value for key, value in from_first.items() if 'Amygdala' not in value } elif hippocampi_method == 'aseg': from_first = { key: value for key, value in from_first.items() if 'Hippocampus' not in value and 'Amygdala' not in value } if thalami_method != 'first': from_first = { key: value for key, value in from_first.items() if 'Thalamus' not in value } run.command(first_cmd + ' -s ' + ','.join(from_first.keys()) + ' -i T1.nii -b -o first') fsl.check_first('first', from_first.keys()) app.cleanup(glob.glob('T1_to_std_sub.*')) progress = app.ProgressBar('Mapping FIRST segmentations to image', 2*len(from_first)) for key, value in from_first.items(): vtk_in_path = 'first-' + key + '_first.vtk' vtk_converted_path = 'first-' + key + '_transformed.vtk' run.command('meshconvert ' + vtk_in_path + ' ' + vtk_converted_path + ' -transform first2real T1.nii') app.cleanup(vtk_in_path) progress.increment() run.command('mesh2voxel ' + vtk_converted_path + ' ' + template_image + ' ' + value + '.mif') app.cleanup(vtk_converted_path) tissue_images[1].append(value + '.mif') progress.increment() if not have_fast: app.cleanup('T1.nii') app.cleanup(glob.glob('first*')) progress.done() # Run ACPCdetect, use results to draw spherical ROIs on T1 that will be fed to FSL FAST, # the WM components of which will then be added to the 5TT if have_acpcdetect: progress = app.ProgressBar('Using ACPCdetect and FAST to segment ' + acpc_string, 5) # ACPCdetect requires input image to be 16-bit # We also want to realign to RAS beforehand so that we can interpret the output voxel locations properly acpcdetect_input_image = 'T1RAS_16b.nii' run.command('mrconvert ' + norm_image + ' -datatype uint16 -stride +1,+2,+3 ' + acpcdetect_input_image) progress.increment() run.command('acpcdetect -i ' + acpcdetect_input_image) progress.increment() # We need the header in order to go from voxel coordinates to scanner coordinates acpcdetect_input_header = image.Header(acpcdetect_input_image) acpcdetect_output_path = os.path.splitext(acpcdetect_input_image)[0] + '_ACPC.txt' app.cleanup(acpcdetect_input_image) with open(acpcdetect_output_path, 'r') as acpc_file: acpcdetect_output_data = acpc_file.read().splitlines() app.cleanup(glob.glob(os.path.splitext(acpcdetect_input_image)[0] + "*")) # Need to scan through the contents of this file, # isolating the AC and PC locations ac_voxel = pc_voxel = None for index, line in enumerate(acpcdetect_output_data): if 'AC' in line and 'voxel location' in line: ac_voxel = [float(item) for item in acpcdetect_output_data[index+1].strip().split()] elif 'PC' in line and 'voxel location' in line: pc_voxel = [float(item) for item in acpcdetect_output_data[index+1].strip().split()] if not ac_voxel or not pc_voxel: raise MRtrixError('Error parsing text file from "acpcdetect"') def voxel2scanner(voxel, header): return [ voxel[0]*header.spacing()[0]*header.transform()[axis][0] + voxel[1]*header.spacing()[1]*header.transform()[axis][1] + voxel[2]*header.spacing()[2]*header.transform()[axis][2] + header.transform()[axis][3] for axis in range(0,3) ] ac_scanner = voxel2scanner(ac_voxel, acpcdetect_input_header) pc_scanner = voxel2scanner(pc_voxel, acpcdetect_input_header) # Generate the mask image within which FAST will be run acpc_prefix = 'ACPC' if ATTEMPT_PC else 'AC' acpc_mask_image = acpc_prefix + '_FAST_mask.mif' run.command('mrcalc ' + template_image + ' nan -eq - | ' 'mredit - ' + acpc_mask_image + ' -scanner ' '-sphere ' + ','.join(str(value) for value in ac_scanner) + ' 8 1 ' + ('-sphere ' + ','.join(str(value) for value in pc_scanner) + ' 5 1' if ATTEMPT_PC else '')) progress.increment() acpc_t1_masked_image = acpc_prefix + '_T1.nii' run.command('mrtransform ' + norm_image + ' -template ' + template_image + ' - | ' 'mrcalc - ' + acpc_mask_image + ' -mult ' + acpc_t1_masked_image) app.cleanup(acpc_mask_image) progress.increment() run.command(fast_cmd + ' -N ' + acpc_t1_masked_image) app.cleanup(acpc_t1_masked_image) progress.increment() # Ideally don't want to have to add these manually; instead add all outputs from FAST # to the 5TT (both cerebellum and AC / PC) in a single go # This should involve grabbing just the WM component of these images # Actually, in retrospect, it may be preferable to do the AC PC segmentation # earlier on, and simply add them to the list of WM structures acpc_wm_image = acpc_prefix + '.mif' run.command('mrconvert ' + fsl.find_image(acpc_prefix + '_T1_pve_2') + ' ' + acpc_wm_image) tissue_images[2].append(acpc_wm_image) app.cleanup(glob.glob(os.path.splitext(acpc_t1_masked_image)[0] + '*')) progress.done() # If we don't have FAST, do cerebellar segmentation in a comparable way to the cortical GM / WM: # Generate one 'pial-like' surface containing the GM and WM of the cerebellum, # and another with just the WM if not have_fast: progress = app.ProgressBar('Adding FreeSurfer cerebellar segmentations directly', 6) for hemi in [ 'Left-', 'Right-' ]: wm_index = [ index for index, tissue, name in CEREBELLUM_ASEG if name.startswith(hemi) and 'White' in name ][0] gm_index = [ index for index, tissue, name in CEREBELLUM_ASEG if name.startswith(hemi) and 'Cortex' in name ][0] run.command('mrcalc ' + aparc_image + ' ' + str(wm_index) + ' -eq ' + aparc_image + ' ' + str(gm_index) + ' -eq -add - | ' + \ 'voxel2mesh - ' + hemi + 'cerebellum_all_init.vtk') progress.increment() run.command('mrcalc ' + aparc_image + ' ' + str(gm_index) + ' -eq - | ' + \ 'voxel2mesh - ' + hemi + 'cerebellum_grey_init.vtk') progress.increment() for name, tissue in { 'all':2, 'grey':1 }.items(): run.command('meshfilter ' + hemi + 'cerebellum_' + name + '_init.vtk smooth ' + hemi + 'cerebellum_' + name + '.vtk') app.cleanup(hemi + 'cerebellum_' + name + '_init.vtk') progress.increment() run.command('mesh2voxel ' + hemi + 'cerebellum_' + name + '.vtk ' + template_image + ' ' + hemi + 'cerebellum_' + name + '.mif') app.cleanup(hemi + 'cerebellum_' + name + '.vtk') progress.increment() tissue_images[tissue].append(hemi + 'cerebellum_' + name + '.mif') progress.done() # Construct images with the partial volume of each tissue progress = app.ProgressBar('Combining segmentations of all structures corresponding to each tissue type', 5) for tissue in range(0,5): run.command('mrmath ' + ' '.join(tissue_images[tissue]) + (' brain_stem.mif' if tissue == 2 else '') + ' sum - | mrcalc - 1.0 -min tissue' + str(tissue) + '_init.mif') app.cleanup(tissue_images[tissue]) progress.increment() progress.done() # This can hopefully be done with a connected-component analysis: Take just the WM image, and # fill in any gaps (i.e. select the inverse, select the largest connected component, invert again) # Make sure that floating-point values are handled appropriately # Combine these images together using the appropriate logic in order to form the 5TT image progress = app.ProgressBar('Modulating segmentation images based on other tissues', 9) tissue_images = [ 'tissue0.mif', 'tissue1.mif', 'tissue2.mif', 'tissue3.mif', 'tissue4.mif' ] run.function(os.rename, 'tissue4_init.mif', 'tissue4.mif') progress.increment() run.command('mrcalc tissue3_init.mif tissue3_init.mif ' + tissue_images[4] + ' -add 1.0 -sub 0.0 -max -sub 0.0 -max ' + tissue_images[3]) app.cleanup('tissue3_init.mif') progress.increment() run.command('mrmath ' + ' '.join(tissue_images[3:5]) + ' sum tissuesum_34.mif') progress.increment() run.command('mrcalc tissue1_init.mif tissue1_init.mif tissuesum_34.mif -add 1.0 -sub 0.0 -max -sub 0.0 -max ' + tissue_images[1]) app.cleanup('tissue1_init.mif') app.cleanup('tissuesum_34.mif') progress.increment() run.command('mrmath ' + tissue_images[1] + ' ' + ' '.join(tissue_images[3:5]) + ' sum tissuesum_134.mif') progress.increment() run.command('mrcalc tissue2_init.mif tissue2_init.mif tissuesum_134.mif -add 1.0 -sub 0.0 -max -sub 0.0 -max ' + tissue_images[2]) app.cleanup('tissue2_init.mif') app.cleanup('tissuesum_134.mif') progress.increment() run.command('mrmath ' + ' '.join(tissue_images[1:5]) + ' sum tissuesum_1234.mif') progress.increment() run.command('mrcalc tissue0_init.mif tissue0_init.mif tissuesum_1234.mif -add 1.0 -sub 0.0 -max -sub 0.0 -max ' + tissue_images[0]) app.cleanup('tissue0_init.mif') app.cleanup('tissuesum_1234.mif') progress.increment() tissue_sum_image = 'tissuesum_01234.mif' run.command('mrmath ' + ' '.join(tissue_images) + ' sum ' + tissue_sum_image) progress.done() if app.ARGS.template: run.command('mrtransform ' + mask_image + ' -template template.mif - | mrthreshold - brainmask.mif -abs 0.5') mask_image = 'brainmask.mif' # Branch depending on whether or not FSL fast will be used to re-segment the cerebellum if have_fast: # How to support -template option? # - Re-grid norm.mgz to template image before running FAST # - Re-grid FAST output to template image # Consider splitting, including initial mapping of cerebellar regions: # - If we're not using a separate template image, just map cerebellar regions to voxels to # produce a mask, and run FAST within that mask # - If we have a template, combine cerebellar regions, convert to surfaces (one per hemisphere), # map these to the template image, run FIRST on a binary mask from this, then # re-combine this with the tissue maps from other sources based on the estimated PVF of # cerebellum meshes cerebellum_volume_image = 'Cerebellum_volume.mif' cerebellum_mask_image = 'Cerebellum_mask.mif' t1_cerebellum_masked = 'T1_cerebellum_precrop.mif' if app.ARGS.template: # If this is the case, then we haven't yet performed any cerebellar segmentation / meshing # What we want to do is: for each hemisphere, combine all three "cerebellar" segments from FreeSurfer, # convert to a surface, map that surface to the template image progress = app.ProgressBar('Preparing images of cerebellum for intensity-based segmentation', 9) cerebellar_hemi_pvf_images = [ ] for hemi in [ 'Left', 'Right' ]: init_mesh_path = hemi + '-Cerebellum-All-Init.vtk' smooth_mesh_path = hemi + '-Cerebellum-All-Smooth.vtk' pvf_image_path = hemi + '-Cerebellum-PVF-Template.mif' cerebellum_aseg_hemi = [ entry for entry in CEREBELLUM_ASEG if hemi in entry[2] ] run.command('mrcalc ' + aparc_image + ' ' + str(cerebellum_aseg_hemi[0][0]) + ' -eq ' + \ ' -add '.join([ aparc_image + ' ' + str(index) + ' -eq' for index, tissue, name in cerebellum_aseg_hemi[1:] ]) + ' -add - | ' + \ 'voxel2mesh - ' + init_mesh_path) progress.increment() run.command('meshfilter ' + init_mesh_path + ' smooth ' + smooth_mesh_path) app.cleanup(init_mesh_path) progress.increment() run.command('mesh2voxel ' + smooth_mesh_path + ' ' + template_image + ' ' + pvf_image_path) app.cleanup(smooth_mesh_path) cerebellar_hemi_pvf_images.append(pvf_image_path) progress.increment() # Combine the two hemispheres together into: # - An image in preparation for running FAST # - A combined total partial volume fraction image that will be later used for tissue recombination run.command('mrcalc ' + ' '.join(cerebellar_hemi_pvf_images) + ' -add 1.0 -min ' + cerebellum_volume_image) app.cleanup(cerebellar_hemi_pvf_images) progress.increment() run.command('mrthreshold ' + cerebellum_volume_image + ' ' + cerebellum_mask_image + ' -abs 1e-6') progress.increment() run.command('mrtransform ' + norm_image + ' -template ' + template_image + ' - | ' + \ 'mrcalc - ' + cerebellum_mask_image + ' -mult ' + t1_cerebellum_masked) progress.done() else: app.console('Preparing images of cerebellum for intensity-based segmentation') run.command('mrcalc ' + aparc_image + ' ' + str(CEREBELLUM_ASEG[0][0]) + ' -eq ' + \ ' -add '.join([ aparc_image + ' ' + str(index) + ' -eq' for index, tissue, name in CEREBELLUM_ASEG[1:] ]) + ' -add ' + \ cerebellum_volume_image) cerebellum_mask_image = cerebellum_volume_image run.command('mrcalc T1.nii ' + cerebellum_mask_image + ' -mult ' + t1_cerebellum_masked) app.cleanup('T1.nii') # Any code below here should be compatible with cerebellum_volume_image.mif containing partial volume fractions # (in the case of no explicit template image, it's a mask, but the logic still applies) app.console('Running FSL fast to segment the cerebellum based on intensity information') # Run FSL FAST just within the cerebellum # FAST memory usage can also be huge when using a high-resolution template image: # Crop T1 image around the cerebellum before feeding to FAST, then re-sample to full template image FoV fast_input_image = 'T1_cerebellum.nii' run.command('mrgrid ' + t1_cerebellum_masked + ' crop -mask ' + cerebellum_mask_image + ' ' + fast_input_image) app.cleanup(t1_cerebellum_masked) # Cleanup of cerebellum_mask_image: # May be same image as cerebellum_volume_image, which is required later if cerebellum_mask_image != cerebellum_volume_image: app.cleanup(cerebellum_mask_image) run.command(fast_cmd + ' -N ' + fast_input_image) app.cleanup(fast_input_image) # Use glob to clean up unwanted FAST outputs fast_output_prefix = os.path.splitext(fast_input_image)[0] fast_pve_output_prefix = fast_output_prefix + '_pve_' app.cleanup([ entry for entry in glob.glob(fast_output_prefix + '*') if not fast_pve_output_prefix in entry ]) progress = app.ProgressBar('Introducing intensity-based cerebellar segmentation into the 5TT image', 10) fast_outputs_cropped = [ fast_pve_output_prefix + str(n) + fast_suffix for n in range(0,3) ] fast_outputs_template = [ 'FAST_' + str(n) + '.mif' for n in range(0,3) ] for inpath, outpath in zip(fast_outputs_cropped, fast_outputs_template): run.command('mrtransform ' + inpath + ' -interp nearest -template ' + template_image + ' ' + outpath) app.cleanup(inpath) progress.increment() if app.ARGS.template: app.cleanup(template_image) # Generate the revised tissue images, using output from FAST inside the cerebellum and # output from previous processing everywhere else # Note that the middle intensity (grey matter) in the FAST output here gets assigned # to the sub-cortical grey matter component # Some of these voxels may have existing non-zero tissue components. # In that case, let's find a multiplier to apply to cerebellum tissues such that the # sum does not exceed 1.0 new_tissue_images = [ 'tissue0_fast.mif', 'tissue1_fast.mif', 'tissue2_fast.mif', 'tissue3_fast.mif', 'tissue4_fast.mif' ] new_tissue_sum_image = 'tissuesum_01234_fast.mif' cerebellum_multiplier_image = 'Cerebellar_multiplier.mif' run.command('mrcalc ' + cerebellum_volume_image + ' ' + tissue_sum_image + ' -add 0.5 -gt 1.0 ' + tissue_sum_image + ' -sub 0.0 -if ' + cerebellum_multiplier_image) app.cleanup(cerebellum_volume_image) progress.increment() run.command('mrconvert ' + tissue_images[0] + ' ' + new_tissue_images[0]) app.cleanup(tissue_images[0]) progress.increment() run.command('mrcalc ' + tissue_images[1] + ' ' + cerebellum_multiplier_image + ' ' + fast_outputs_template[1] + ' -mult -add ' + new_tissue_images[1]) app.cleanup(tissue_images[1]) app.cleanup(fast_outputs_template[1]) progress.increment() run.command('mrcalc ' + tissue_images[2] + ' ' + cerebellum_multiplier_image + ' ' + fast_outputs_template[2] + ' -mult -add ' + new_tissue_images[2]) app.cleanup(tissue_images[2]) app.cleanup(fast_outputs_template[2]) progress.increment() run.command('mrcalc ' + tissue_images[3] + ' ' + cerebellum_multiplier_image + ' ' + fast_outputs_template[0] + ' -mult -add ' + new_tissue_images[3]) app.cleanup(tissue_images[3]) app.cleanup(fast_outputs_template[0]) app.cleanup(cerebellum_multiplier_image) progress.increment() run.command('mrconvert ' + tissue_images[4] + ' ' + new_tissue_images[4]) app.cleanup(tissue_images[4]) progress.increment() run.command('mrmath ' + ' '.join(new_tissue_images) + ' sum ' + new_tissue_sum_image) app.cleanup(tissue_sum_image) progress.done() tissue_images = new_tissue_images tissue_sum_image = new_tissue_sum_image # For all voxels within FreeSurfer's brain mask, add to the CSF image in order to make the sum 1.0 progress = app.ProgressBar('Performing fill operations to preserve unity tissue volume', 2) # Some voxels may get a non-zero cortical GM fraction due to native use of the surface representation, yet # these voxels are actually outside FreeSurfer's own provided brain mask. So what we need to do here is # get the union of the tissue sum nonzero image and the mask image, and use that at the -mult step of the # mrcalc call. # Required image: (tissue_sum_image > 0.0) || mask_image # tissue_sum_image 0.0 -gt mask_image -add 1.0 -min new_tissue_images = [ tissue_images[0], tissue_images[1], tissue_images[2], os.path.splitext(tissue_images[3])[0] + '_filled.mif', tissue_images[4] ] csf_fill_image = 'csf_fill.mif' run.command('mrcalc 1.0 ' + tissue_sum_image + ' -sub ' + tissue_sum_image + ' 0.0 -gt ' + mask_image + ' -add 1.0 -min -mult 0.0 -max ' + csf_fill_image) app.cleanup(tissue_sum_image) # If no template is specified, this file is part of the FreeSurfer output; hence don't modify if app.ARGS.template: app.cleanup(mask_image) progress.increment() run.command('mrcalc ' + tissue_images[3] + ' ' + csf_fill_image + ' -add ' + new_tissue_images[3]) app.cleanup(csf_fill_image) app.cleanup(tissue_images[3]) progress.done() tissue_images = new_tissue_images # Move brain stem from white matter to pathology at final step: # this prevents the brain stem segmentation from overwriting other # structures that it otherwise wouldn't if it were written to WM if not app.ARGS.white_stem: progress = app.ProgressBar('Moving brain stem to volume index 4', 3) new_tissue_images = [ tissue_images[0], tissue_images[1], os.path.splitext(tissue_images[2])[0] + '_no_brainstem.mif', tissue_images[3], os.path.splitext(tissue_images[4])[0] + '_with_brainstem.mif' ] run.command('mrcalc ' + tissue_images[2] + ' brain_stem.mif -min brain_stem_white_overlap.mif') app.cleanup('brain_stem.mif') progress.increment() run.command('mrcalc ' + tissue_images[2] + ' brain_stem_white_overlap.mif -sub ' + new_tissue_images[2]) app.cleanup(tissue_images[2]) progress.increment() run.command('mrcalc ' + tissue_images[4] + ' brain_stem_white_overlap.mif -add ' + new_tissue_images[4]) app.cleanup(tissue_images[4]) app.cleanup('brain_stem_white_overlap.mif') progress.done() tissue_images = new_tissue_images # Finally, concatenate the volumes to produce the 5TT image app.console('Concatenating tissue volumes into 5TT format') precrop_result_image = '5TT.mif' if bs_cropmask_path: run.command('mrcat ' + ' '.join(tissue_images) + ' - -axis 3 | ' + \ '5ttedit - ' + precrop_result_image + ' -none ' + bs_cropmask_path) app.cleanup(bs_cropmask_path) else: run.command('mrcat ' + ' '.join(tissue_images) + ' ' + precrop_result_image + ' -axis 3') app.cleanup(tissue_images) # Maybe don't go off all tissues here, since FreeSurfer's mask can be fairly liberal; # instead get just a voxel clearance from all other tissue types (maybe two) if app.ARGS.nocrop: run.function(os.rename, precrop_result_image, 'result.mif') else: app.console('Cropping final 5TT image') crop_mask_image = 'crop_mask.mif' run.command('mrconvert ' + precrop_result_image + ' -coord 3 0,1,2,4 - | mrmath - sum - -axis 3 | mrthreshold - - -abs 0.001 | maskfilter - dilate ' + crop_mask_image) run.command('mrgrid ' + precrop_result_image + ' crop result.mif -mask ' + crop_mask_image) app.cleanup(crop_mask_image) app.cleanup(precrop_result_image) run.command('mrconvert result.mif ' + path.from_user(app.ARGS.output), mrconvert_keyval=path.from_user(os.path.join(app.ARGS.input, 'mri', 'aparc+aseg.mgz'), True), force=app.FORCE_OVERWRITE)