Ejemplo n.º 1
0
def checkFirst(prefix, structures): #pylint: disable=unused-variable
  import os
  from mrtrix3 import app, file, path # pylint: disable=redefined-builtin
  vtk_files = [ prefix + '-' + struct + '_first.vtk' for struct in structures ]
  existing_file_count = sum([ os.path.exists(filename) for filename in vtk_files ])
  if existing_file_count != len(vtk_files):
    if 'SGE_ROOT' in os.environ:
      app.console('FSL FIRST job has been submitted to SGE; awaiting completion')
      app.console('(note however that FIRST may fail silently, and hence this script may hang indefinitely)')
      file.waitFor(vtk_files)
    else:
      app.error('FSL FIRST has failed; only ' + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.toTemp('first.logs', False) + ')')
Ejemplo n.º 2
0
def checkFirst(prefix, structures):  #pylint: disable=unused-variable
    import os
    from mrtrix3 import app, file, path  # pylint: disable=redefined-builtin
    vtk_files = [prefix + '-' + struct + '_first.vtk' for struct in structures]
    existing_file_count = sum(
        [os.path.exists(filename) for filename in vtk_files])
    if existing_file_count != len(vtk_files):
        if 'SGE_ROOT' in os.environ:
            app.console(
                'FSL FIRST job has been submitted to SGE; awaiting completion')
            app.console(
                '(note however that FIRST may fail silently, and hence this script may hang indefinitely)'
            )
            file.waitFor(vtk_files)
        else:
            app.error('FSL FIRST has failed; only ' +
                      str(existing_file_count) + ' of ' + str(len(vtk_files)) +
                      ' structures were segmented successfully (check ' +
                      path.toTemp('first.logs', False) + ')')
Ejemplo n.º 3
0
def execute():
    import os
    from distutils.spawn import find_executable
    from mrtrix3 import app, file, fsl, image, run

    if app.isWindows():
        app.error(
            '\'fsl\' algorithm of 5ttgen script cannot be run on Windows: FSL not available on Windows'
        )

    fsl_path = os.environ.get('FSLDIR', '')
    if not fsl_path:
        app.error(
            'Environment variable FSLDIR is not set; please run appropriate FSL configuration script'
        )

    ssroi_cmd = 'standard_space_roi'
    if not find_executable(ssroi_cmd):
        ssroi_cmd = 'fsl5.0-standard_space_roi'
        if not find_executable(ssroi_cmd):
            app.error(
                'Could not find FSL program standard_space_roi; please verify FSL install'
            )

    bet_cmd = 'bet'
    if not find_executable(bet_cmd):
        bet_cmd = 'fsl5.0-bet'
        if not find_executable(bet_cmd):
            app.error(
                'Could not find FSL program bet; please verify FSL install')

    fast_cmd = 'fast'
    if not find_executable(fast_cmd):
        fast_cmd = 'fsl5.0-fast'
        if not find_executable(fast_cmd):
            app.error(
                'Could not find FSL program fast; please verify FSL install')

    first_cmd = 'run_first_all'
    if not find_executable(first_cmd):
        first_cmd = "fsl5.0-run_first_all"
        if not find_executable(first_cmd):
            app.error(
                'Could not find FSL program run_first_all; please verify FSL install'
            )

    first_atlas_path = os.path.join(fsl_path, 'data', 'first',
                                    'models_336_bin')

    if not os.path.isdir(first_atlas_path):
        app.error(
            'Atlases required for FSL\'s FIRST program not installed; please install fsl-first-data using your relevant package manager'
        )

    fsl_suffix = fsl.suffix()

    sgm_structures = [
        'L_Accu', 'R_Accu', 'L_Caud', 'R_Caud', 'L_Pall', 'R_Pall', 'L_Puta',
        'R_Puta', 'L_Thal', 'R_Thal'
    ]
    if app.args.sgm_amyg_hipp:
        sgm_structures.extend(['L_Amyg', 'R_Amyg', 'L_Hipp', 'R_Hipp'])

    run.command('mrconvert input.mif T1.nii -stride -1,+2,+3')

    fast_t1_input = 'T1.nii'
    fast_t2_input = ''

    # Decide whether or not we're going to do any brain masking
    if os.path.exists('mask.mif'):

        fast_t1_input = 'T1_masked' + fsl_suffix

        # Check to see if the mask matches the T1 image
        if image.match('T1.nii', 'mask.mif'):
            run.command('mrcalc T1.nii mask.mif -mult ' + fast_t1_input)
            mask_path = 'mask.mif'
        else:
            app.warn('Mask image does not match input image - re-gridding')
            run.command(
                'mrtransform mask.mif mask_regrid.mif -template T1.nii')
            run.command('mrcalc T1.nii mask_regrid.mif ' + fast_t1_input)
            mask_path = 'mask_regrid.mif'

        if os.path.exists('T2.nii'):
            fast_t2_input = 'T2_masked' + fsl_suffix
            run.command('mrcalc T2.nii ' + mask_path + ' -mult ' +
                        fast_t2_input)

    elif app.args.premasked:

        fast_t1_input = 'T1.nii'
        if os.path.exists('T2.nii'):
            fast_t2_input = 'T2.nii'

    else:

        # Use FSL command standard_space_roi to do an initial masking of the image before BET
        # Also reduce the FoV of the image
        # Using MNI 1mm dilated brain mask rather than the -b option in standard_space_roi (which uses the 2mm mask); the latter looks 'buggy' to me... Unfortunately even with the 1mm 'dilated' mask, it can still cut into some brain areas, hence the explicit dilation
        mni_mask_path = os.path.join(fsl_path, 'data', 'standard',
                                     'MNI152_T1_1mm_brain_mask_dil.nii.gz')
        mni_mask_dilation = 0
        if os.path.exists(mni_mask_path):
            mni_mask_dilation = 4
        else:
            mni_mask_path = os.path.join(
                fsl_path, 'data', 'standard',
                'MNI152_T1_2mm_brain_mask_dil.nii.gz')
            if os.path.exists(mni_mask_path):
                mni_mask_dilation = 2
        if mni_mask_dilation:
            run.command('maskfilter ' + mni_mask_path +
                        ' dilate mni_mask.nii -npass ' +
                        str(mni_mask_dilation))
            if app.args.nocrop:
                ssroi_roi_option = ' -roiNONE'
            else:
                ssroi_roi_option = ' -roiFOV'
            run.command(
                ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix +
                ' -maskMASK mni_mask.nii' + ssroi_roi_option, False)
        else:
            run.command(ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix + ' -b',
                        False)

        # For whatever reason, the output file from standard_space_roi may not be
        #   completed before BET is run
        file.waitFor('T1_preBET' + fsl_suffix)

        # BET
        fast_t1_input = 'T1_BET' + fsl_suffix
        run.command(bet_cmd + ' T1_preBET' + fsl_suffix + ' ' + fast_t1_input +
                    ' -f 0.15 -R')

        if os.path.exists('T2.nii'):
            if app.args.nocrop:
                fast_t2_input = 'T2.nii'
            else:
                # Just a reduction of FoV, no sub-voxel interpolation going on
                run.command('mrtransform T2.nii T2_cropped.nii -template ' +
                            fast_t1_input + ' -interp nearest')
                fast_t2_input = 'T2_cropped.nii'

    # Finish branching based on brain masking

    # FAST
    if fast_t2_input:
        run.command(fast_cmd + ' -S 2 ' + fast_t2_input + ' ' + fast_t1_input)
    else:
        run.command(fast_cmd + ' ' + fast_t1_input)
    fast_output_prefix = fast_t1_input.split('.')[0]

    # FIRST
    first_input_is_brain_extracted = ''
    if app.args.premasked:
        first_input_is_brain_extracted = ' -b'
    run.command(first_cmd + ' -s ' + ','.join(sgm_structures) +
                ' -i T1.nii -o first' + first_input_is_brain_extracted)

    # Test to see whether or not FIRST has succeeded
    # However if the expected image is absent, it may be due to FIRST being run
    #   on SGE; in this case it is necessary to wait and see if the file appears.
    #   But even in this case, FIRST may still fail, and the file will never appear...
    combined_image_path = 'first_all_none_firstseg' + fsl_suffix
    if not os.path.isfile(combined_image_path):
        if 'SGE_ROOT' in os.environ:
            app.console(
                'FSL FIRST job has been submitted to SGE; awaiting completion')
            app.console(
                '(note however that FIRST may fail, and hence this script may hang indefinitely)'
            )
            file.waitFor(combined_image_path)
        else:
            app.error(
                'FSL FIRST has failed; not all structures were segmented successfully (check '
                + path.toTemp('first.logs', False) + ')')

    # Convert FIRST meshes to partial volume images
    pve_image_list = []
    for struct in sgm_structures:
        pve_image_path = 'mesh2pve_' + struct + '.mif'
        vtk_in_path = 'first-' + struct + '_first.vtk'
        vtk_temp_path = struct + '.vtk'
        run.command('meshconvert ' + vtk_in_path + ' ' + vtk_temp_path +
                    ' -transform first2real T1.nii')
        run.command('mesh2pve ' + vtk_temp_path + ' ' + fast_t1_input + ' ' +
                    pve_image_path)
        pve_image_list.append(pve_image_path)
    pve_cat = ' '.join(pve_image_list)
    run.command('mrmath ' + pve_cat +
                ' sum - | mrcalc - 1.0 -min all_sgms.mif')

    # Looks like FAST in 5.0 ignores FSLOUTPUTTYPE when writing the PVE images
    # Will have to wait and see whether this changes, and update the script accordingly
    if fast_cmd == 'fast':
        fast_suffix = fsl_suffix
    else:
        fast_suffix = '.nii.gz'

    # Combine the tissue images into the 5TT format within the script itself
    # Step 1: Run LCC on the WM image
    run.command(
        'mrthreshold ' + fast_output_prefix + '_pve_2' + fast_suffix +
        ' - -abs 0.001 | maskfilter - connect - -connectivity | mrcalc 1 - 1 -gt -sub remove_unconnected_wm_mask.mif -datatype bit'
    )
    # Step 2: Generate the images in the same fashion as the 5ttgen command
    run.command('mrcalc ' + fast_output_prefix + '_pve_0' + fast_suffix +
                ' remove_unconnected_wm_mask.mif -mult csf.mif')
    run.command('mrcalc 1.0 csf.mif -sub all_sgms.mif -min sgm.mif')
    run.command('mrcalc 1.0 csf.mif sgm.mif -add -sub ' + fast_output_prefix +
                '_pve_1' + fast_suffix + ' ' + fast_output_prefix + '_pve_2' +
                fast_suffix + ' -add -div multiplier.mif')
    run.command(
        'mrcalc multiplier.mif -finite multiplier.mif 0.0 -if multiplier_noNAN.mif'
    )
    run.command(
        'mrcalc ' + fast_output_prefix + '_pve_1' + fast_suffix +
        ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult cgm.mif'
    )
    run.command(
        'mrcalc ' + fast_output_prefix + '_pve_2' + fast_suffix +
        ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult wm.mif'
    )
    run.command('mrcalc 0 wm.mif -min path.mif')
    run.command(
        'mrcat cgm.mif sgm.mif wm.mif csf.mif path.mif - -axis 3 | mrconvert - combined_precrop.mif -stride +2,+3,+4,+1'
    )

    # Use mrcrop to reduce file size (improves caching of image data during tracking)
    if app.args.nocrop:
        run.command('mrconvert combined_precrop.mif result.mif')
    else:
        run.command(
            'mrmath combined_precrop.mif sum - -axis 3 | mrthreshold - - -abs 0.5 | mrcrop combined_precrop.mif result.mif -mask -'
        )