Ejemplo n.º 1
0
    data_mode = ["dev"]
    for dm in data_mode:
        dpath = os.path.join(args.input_path, data_format.format(dm))
        data = dev_reader._read(dpath) if dm == "dev" else train_reader._read(
            dpath)
        print("Save data to {}.".format(
            os.path.join(args.output_dir,
                         "tmspan_cached_roberta_{}.pkl".format(dm))))
        with open(
                os.path.join(args.output_dir,
                             "tmspan_cached_roberta_{}.pkl".format(dm)),
                "wb") as f:
            pickle.dump(data, f)
else:
    dev_reader = DropReader(tokenizer, args.passage_length_limit,
                            args.question_length_limit)
    train_reader = DropReader(tokenizer,
                              args.passage_length_limit,
                              args.question_length_limit,
                              skip_when_all_empty=[
                                  "passage_span",
                                  "question_span",
                                  "addition_subtraction",
                                  "counting",
                              ])

    data_format = "drop_dataset_{}.json"

    data_mode = ["train"]
    for dm in data_mode:
        dpath = os.path.join(args.input_path, data_format.format(dm))
Ejemplo n.º 2
0
print("Load from pre path {}.".format(args.pre_path))
network.load_state_dict(torch.load(args.pre_path))

print("Load data from {}.".format(args.inf_path))
tokenizer = RobertaTokenizer.from_pretrained(args.roberta_model)
if args.tag_mspan:
    inf_iter = TDropBatchGen(
        args, tokenizer,
        TDropReader(tokenizer,
                    passage_length_limit=463,
                    question_length_limit=46)._read(args.inf_path))
else:
    inf_iter = DropBatchGen(
        args, tokenizer,
        DropReader(tokenizer,
                   passage_length_limit=463,
                   question_length_limit=46)._read(args.inf_path))

print("Start inference...")
result = {}
network.eval()
with torch.no_grad():
    for batch in tqdm(inf_iter):
        output_dict = network(**batch)
        for i in range(len(output_dict["question_id"])):
            if "arithmetic_expression" in output_dict["answer"][i].keys():
                result[output_dict["question_id"][i]] = {
                    "predicted_answer":
                    output_dict["answer"][i]["predicted_answer"],
                    "answer_type":
                    output_dict["answer"][i]["answer_type"],
Ejemplo n.º 3
0

print("Build bert model.")
bert_model = RobertaModel(RobertaConfig().from_pretrained(args.roberta_model))
print("Build Drop model.")
network = NumericallyAugmentedBertNet(bert_model,
                hidden_size=bert_model.config.hidden_size,
                dropout_prob=0.0,
                use_gcn=args.use_gcn,
                gcn_steps=args.gcn_steps)

if args.cuda: network.cuda()
print("Load from pre path {}.".format(args.pre_path))
network.load_state_dict(torch.load(args.pre_path))

print("Load data from {}.".format(args.inf_path))
tokenizer = RobertaTokenizer.from_pretrained(args.roberta_model)
inf_iter = DropBatchGen(args, tokenizer, DropReader(tokenizer, passage_length_limit=463, question_length_limit=46)._read(args.inf_path))

print("Start inference...")
result = {}
network.eval()
with torch.no_grad():
    for batch in tqdm(inf_iter):
        output_dict = network(**batch)
        for i in range(len(output_dict["question_id"])):
            result[output_dict["question_id"][i]] =  output_dict["answer"][i]["predicted_answer"]

with open(args.dump_path, "w", encoding="utf8") as f:
    json.dump(result, f)
Ejemplo n.º 4
0
import argparse
from pytorch_transformers.tokenization_roberta import RobertaTokenizer
from mspan_roberta_gcn.drop_roberta_dataset import DropReader

parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--passage_length_limit", type=int, default=463)
parser.add_argument("--question_length_limit", type=int, default=46)

args = parser.parse_args()

tokenizer = RobertaTokenizer.from_pretrained(args.input_path +
                                             "/roberta.large")

dev_reader = DropReader(tokenizer, args.passage_length_limit,
                        args.question_length_limit)

train_reader = DropReader(tokenizer,
                          args.passage_length_limit,
                          args.question_length_limit,
                          skip_when_all_empty=[
                              "passage_span",
                              "question_span",
                              "addition_subtraction",
                              "counting",
                          ])

data_format = "drop_dataset_{}.json"

data_mode = ["train"]
for dm in data_mode: