def test_concepts_performance(events_service, concepts_service, test_results): input_dir = Path(os.environ['BIOMEDICUS_TEST_DATA']) / 'concepts' recall = Accuracy(name='recall', mode='any', fields=['cui']) precision = Accuracy(name='precision', mode='any', fields=['cui']) with EventsClient(address=events_service) as client, \ Pipeline( RemoteProcessor(processor_id='biomedicus-concepts', address=concepts_service), LocalProcessor(Metrics(recall, tested='umls_concepts', target='gold_concepts'), component_id='metrics'), LocalProcessor(Metrics(precision, tested='gold_concepts', target='umls_concepts'), component_id='metrics_reverse'), events_client=client ) as pipeline: for test_file in input_dir.glob('**/*.pickle'): with PickleSerializer.file_to_event(test_file, client=client) as event: document = event.documents['plaintext'] pipeline.run(document) print('Precision:', precision.value) print('Recall:', recall.value) timing_info = pipeline.processor_timer_stats('biomedicus-concepts').timing_info test_results['Concepts'] = { 'Precision': precision.value, 'Recall': recall.value, 'Remote Call Duration': str(timing_info['remote_call'].mean), 'Process Method Duration': str(timing_info['process_method'].mean) } assert recall.value > 0.6
def test_acronyms_performance(events_service, acronyms_service, test_results): input_dir = Path(os.environ['BIOMEDICUS_PHI_TEST_DATA']) / 'acronyms' top_score_accuracy = Accuracy(name='top_score_accuracy', fields=['expansion']) any_accuracy = Accuracy(name='any_accuracy', mode='any', fields=['expansion']) detection_recall = Accuracy(name='detection_recall', mode='location', fields=['expansion']) detection_precision = Accuracy(name='detection_precision', mode='location', fields=['expansion']) with EventsClient(address=events_service) as client, Pipeline( RemoteProcessor(processor_id='biomedicus-acronyms', address=acronyms_service), LocalProcessor(Metrics(top_score_accuracy, detection_recall, tested='acronyms', target='gold_acronyms'), component_id='top_score_metrics', client=client), LocalProcessor(Metrics(detection_precision, tested='gold_acronyms', target='acronyms'), component_id='top_score_reverse', client=client), LocalProcessor(Metrics(any_accuracy, tested='all_acronym_senses', target='gold_acronyms'), component_id='all_senses_metrics', client=client)) as pipeline: for test_file in input_dir.glob('**/*.json'): with JsonSerializer.file_to_event(test_file, client=client) as event: document = event.documents['plaintext'] pipeline.run(document) print('Top Sense Accuracy:', top_score_accuracy.value) print('Any Sense Accuracy:', any_accuracy.value) print('Detection Recall:', detection_recall.value) print('Detection Precision:', detection_precision.value) pipeline.print_times() timing_info = pipeline.processor_timer_stats( 'biomedicus-acronyms').timing_info test_results['acronyms'] = { 'Top sense accuracy': top_score_accuracy.value, 'Any sense accuracy': any_accuracy.value, 'Detection Recall': detection_recall.value, 'Detection Precision': detection_precision.value, 'Remote Call Duration': str(timing_info['remote_call'].mean), 'Process Method Duration': str(timing_info['process_method'].mean) } assert top_score_accuracy.value > 0.4 assert any_accuracy.value > 0.4 assert detection_recall.value > 0.65
def test_fields(): with Event(event_id='1') as event: doc = event.create_document('test', 'This is some text.') with doc.get_labeler('tested') as tested: tested(0, 5, x=1, y=3) tested(6, 10, x=3, y=4) with doc.get_labeler('target') as target: target(0, 5, x=1, y=5) target(6, 10, x=2, y=6) acc = Accuracy(fields=['x']) metrics = Metrics(acc, tested='tested', target='target') metrics.process_document(doc, params={}) assert abs(acc.value - 0.5) < 1e-6
def test_any(): with Event(event_id='1') as event: doc = event.create_document('test', 'This is some text.') with doc.get_labeler('tested') as tested: tested(0, 5, x=1) tested(0, 5, x=3) with doc.get_labeler('target') as target: target(0, 5, x=1) target(6, 10, x=2) acc = Accuracy(mode='any') metrics = Metrics(acc, tested='tested', target='target') metrics.process_document(doc, params={}) assert abs(acc.value - 0.5) < 1e-6
def test_tnt_performance(events_service, pos_tags_service, test_results): input_dir = Path(os.environ['BIOMEDICUS_TEST_DATA']) / 'pos_tags' accuracy = Accuracy() with EventsClient(address=events_service) as client, Pipeline( RemoteProcessor(processor_id='biomedicus-tnt-tagger', address=pos_tags_service, params={'token_index': 'gold_tags'}), LocalProcessor(Metrics(accuracy, tested='pos_tags', target='gold_tags'), component_id='metrics'), events_client=client) as pipeline: for test_file in input_dir.glob('**/*.pickle'): event = PickleSerializer.file_to_event(test_file, client=client) with event: document = event.documents['gold'] results = pipeline.run(document) print( 'Accuracy for event - ', event.event_id, ':', results.component_result( 'metrics').result_dict['accuracy']) print('Accuracy:', accuracy.value) pipeline.print_times() timing_info = pipeline.processor_timer_stats( 'biomedicus-tnt-tagger').timing_info test_results['TnT Pos Tagger'] = { 'Accuracy': accuracy.value, 'Remote Call Duration': str(timing_info['remote_call'].mean), 'Process Method Duration': str(timing_info['process_method'].mean) } assert accuracy.value > 0.9
def test_dependencies(events_service, dependencies_service, test_results): test_dir = Path(os.environ['BIOMEDICUS_TEST_DATA']) / 'dependencies' uas = Accuracy('UAS', equivalence_test=uas_equal) las = Accuracy('LAS', equivalence_test=las_equal) with EventsClient(address=events_service) as client, \ Pipeline( RemoteProcessor(processor_id='biomedicus-dependencies', address=dependencies_service), LocalProcessor(Metrics(uas, las, tested='dependencies', target='gold_dependencies'), component_id='accuracy', client=client) ) as pipeline: for test_file in test_dir.glob('**/*.pickle'): with PickleSerializer.file_to_event(test_file, client=client) as event: document = event.documents['plaintext'] results = pipeline.run(document) accuracy_dict = results.component_result( 'accuracy').result_dict print('Results for document: UAS: {}. LAS: {}.'.format( accuracy_dict['UAS'], accuracy_dict['LAS'])) print('UAS:', uas.value) print('LAS:', las.value) timing_info = pipeline.processor_timer_stats( 'biomedicus-dependencies').timing_info test_results['biomedicus-dependencies'] = { 'UAS': uas.value, 'LAS': las.value, 'Corpus': "MiPACQ converted to UD from PTB test set", 'Remote Call Duration': str(timing_info['remote_call'].mean), 'Process Method Duration': str(timing_info['process_method'].mean) }
def test_boundary_fuzz_equals(): with Event(event_id='1') as event: doc = event.create_document('test', 'This is some text.') with doc.get_labeler('tested') as tested: tested(0, 5) tested(6, 10) tested(11, 20) tested(21, 29) tested(31, 39) with doc.get_labeler('target') as target: target(0, 6) target(7, 10) target(11, 19) target(20, 30) target(49, 50) acc = Accuracy(boundary_fuzz=1) metrics = Metrics(acc, tested='tested', target='target') metrics.process_document(doc, params={}) assert abs(acc.value - 0.8) < 1e-6