Ejemplo n.º 1
0
 def __run__(self) -> None:
     if self.__runing:
         print("Error! Process already started it\'s execution.")
         return None
     self.__runing = True
     arg = p(target=stuff("python " + self.__task.get_path()), daemon=True)
     arg.start()
     del arg
     return None
Ejemplo n.º 2
0
def main(maxIter, delta, stdInit):
    from multiprocessing import Process as p
    filename = "data/data"
    numFeatures, numActions, k, thetaB, D = read_data(filename)

    numCandidates = 20
    process = []
    for count in range(numCandidates):
        process.append(
            p(target=get_multiple_candidates,
              args=(maxIter, delta, stdInit, numFeatures, numActions, k,
                    thetaB, D, count + 1)))
        process[-1].start()

    for proc in process:
        proc.join()
Ejemplo n.º 3
0
    return {k: x.get(k, 0) + y.get(k, 0) for k in set(x) | set(y)}

def average_dict(dict_a,iterations):
    return {k: float(dict_a.get(k, 0))/iterations for k in set(dict_a)}

if __name__ == "__main__":
    data_set_location = "/lv_local/home/sgregory/letor_fixed1"
    q = qtf.qtf(data_set_location)
    q.create_query_to_fold_index()
    l = lfc.letor_folds_creator_z_normalize(data_set_location, data_set_location, True)
    c = cv.cross_validator(5, l, "LTOR_MART_min_max")
    lbda_score_file = "/lv_local/home/sgregory/LTOR_MART_min_max/test_scores_trec_format/LAMBDAMART/final_score_combined.txt"
    svm_score_file = "/lv_local/home/sgregory/LTOR1/test_scores_trec_format/SVM/final_score_combined.txt"
    rel_index = ri.relevance_index("qrels")
    rel_index.create_relevance_index()
    pool = p(3)

    gg = d.lambda_mart_stats_handler("01", 0.1,c)
    aa = d.lambda_mart_stats_handler("005", 0.05,c)
    bb = d.lambda_mart_stats_handler("001", 0.01, c)
    svm_gg = srfh.winner_reference_point_random("01",0.1)
    svm_aa = srfh.winner_reference_point_random("005", 0.05)
    svm_bb = srfh.winner_reference_point_random("001", 0.01)

    lbda_chosen_models = gg.recover_models_per_fold("/lv_local/home/sgregory/LTOR_MART_min_max/models/LAMBDAMART",
                                               "/lv_local/home/sgregory/LTOR_MART_min_max/test_scores_trec_format/LAMBDAMART/")
    svm_chosen_models = svm_gg.recover_models_per_fold("/lv_local/home/sgregory/LTOR1/models/SVM",
                                               "/lv_local/home/sgregory/LTOR1/test_scores_trec_format/SVM/")
    lbda_f = partial(lbda_simulation, lbda_chosen_models, data_set_location, q.query_to_fold_index, lbda_score_file, "/lv_local/home/sgregory/LTOR_MART_min_max/competition", "/lv_local/home/sgregory/LTOR_MART_min_max/new_scores/", "/lv_local/home/sgregory/LTOR_MART_min_max/models/LAMBDAMART/",rel_index.rel_index)

    lbda_g_input = [gg, aa, bb]
Ejemplo n.º 4
0
Archivo: dos.py Proyecto: shetel/Dos
print('\033[36m')
print('made by tricker')
print('\033[0m')

url = input('url :')
thread = int(input('thread(default 500) :'))


def dos():
    pass


def att():
    while True:
        dos()


def req():
    p = rg(url)
    print(p)


def a():
    while True:
        req()


for i in range(thread):
    t = p(target=a)
    t.start()
Ejemplo n.º 5
0
    processes = []

    @classmethod
    def f(cls, args):
        hub = subprocess.Popen([args])
        cls.processes.append(hub)
        print(args, '->', hub)

    @classmethod
    def stop_process(cls):
        for i in cls.processes:
            os.killpg(os.getpid(i.pid))


if __name__ == '__main__':
    os.chdir("E:\\grid")
    #   os.system('dir')
    #   hub = subprocess.Popen(['java', '-jar', 'selenium-server-standalone.jar', '-role', 'hub'])

    process_one_hub = p(target=Proc.f, args=('hub.bat', ))
    process_one_hub.start()  ##  netstat -ano

    ############
    time.sleep(5)

    process_two_server = p(target=Proc.f, args=('node1.bat', ))
    process_two_server.start()

    Proc.stop_process()
Ejemplo n.º 6
0
                                              10, data_set_location, 0.1,
                                              chosen_models,
                                              query_to_fold_index)
    return c.competition(budget_creator.model)


if __name__ == "__main__":

    data_set_location = "C:/study/letor_fixed1"
    q = qtf.qtf(data_set_location)
    q.create_query_to_fold_index()

    score_file = "C:/study/simulation_data/test_scores_trec_format/SVM/final_score_combined.txt"

    cost_model = "log_0.1.jpg"
    pool = p(2)
    """lg =lb.logarithmic_budget_cost_creator("log")#l.linear_budget_cost_creator(factor) #e.exponential_budget_cost_creator()##  # #
    e = e.exponential_budget_cost_creator("exp")
    li = l.linear_budget_cost_creator("linear")"""
    lg = d.winner_reference_point("005", 0.05)
    gg = d.winner_reference_point("001", 0.01)
    #fg = d.distance_budget_cost_creator("003", 0.03)
    chosen_models = lg.recover_models_per_fold(
        "C:/study/simulation_data/models/SVM",
        "C:/study/simulation_data/test_scores_trec_format/SVM/")
    f = partial(simulation, chosen_models, data_set_location,
                q.query_to_fold_index, score_file)

    g_input = [gg, lg]
    results = pool.map(f, g_input)