Ejemplo n.º 1
0
def test_er_nifti_dataset_mapping():
    """Some mapping testing -- more tests is better
    """
    # z,y,x
    sample_size = (4, 3, 2)
    # t,z,y,x
    samples = np.arange(120).reshape((5, ) + sample_size)
    dsmask = np.arange(24).reshape(sample_size) % 2
    if externals.exists('nibabel'):
        import nibabel
        tds = fmri_dataset(nibabel.Nifti1Image(samples.T, None),
                           mask=nibabel.Nifti1Image(dsmask.T, None))
    else:
        import nifti
        tds = fmri_dataset(nifti.NiftiImage(samples),
                           mask=nifti.NiftiImage(dsmask))
    ds = eventrelated_dataset(tds,
                              events=[
                                  Event(onset=0,
                                        duration=2,
                                        label=1,
                                        chunk=1,
                                        features=[1000, 1001]),
                                  Event(onset=1,
                                        duration=2,
                                        label=2,
                                        chunk=1,
                                        features=[2000, 2001])
                              ])
    nfeatures = tds.nfeatures
    mask = np.zeros(dsmask.shape, dtype='bool')
    mask[0, 0, 0] = mask[1, 0, 1] = mask[0, 0, 1] = 1
    fmask = ds.a.mapper.forward1(mask.T)
    # select using mask in volume and all features in the other part
    ds_sel = ds[:, fmask]

    # now tests
    assert_array_equal(mask.reshape(24).nonzero()[0], [0, 1, 7])
    # two events, 2 orig features at 2 timepoints
    assert_equal(ds_sel.samples.shape, (2, 4))
    assert_array_equal(ds_sel.sa.features, [[1000, 1001], [2000, 2001]])
    assert_array_equal(ds_sel.samples, [[1, 7, 25, 31], [25, 31, 49, 55]])
    # reproducability
    assert_array_equal(ds_sel.samples,
                       ds_sel.a.mapper.forward(np.rollaxis(samples.T, -1)))

    # reverse-mapping
    rmapped = ds_sel.a.mapper.reverse1(np.arange(10, 14))
    assert_equal(np.rollaxis(rmapped, 0, 4).T.shape, (2, ) + sample_size)
    expected = np.zeros((2, ) + sample_size, dtype='int')
    expected[0, 0, 0, 1] = 10
    expected[0, 1, 0, 1] = 11
    expected[1, 0, 0, 1] = 12
    expected[1, 1, 0, 1] = 13
    assert_array_equal(np.rollaxis(rmapped, 0, 4).T, expected)
Ejemplo n.º 2
0
def test_er_nifti_dataset_mapping():
    """Some mapping testing -- more tests is better
    """
    # z,y,x
    sample_size = (4, 3, 2)
    # t,z,y,x
    samples = np.arange(120).reshape((5,) + sample_size)
    dsmask = np.arange(24).reshape(sample_size) % 2
    if externals.exists('nibabel'):
        import nibabel
        tds = fmri_dataset(nibabel.Nifti1Image(samples.T, None),
                           mask=nibabel.Nifti1Image(dsmask.T, None))
    else:
        import nifti
        tds = fmri_dataset(nifti.NiftiImage(samples),
                           mask=nifti.NiftiImage(dsmask))
    ds = eventrelated_dataset(
            tds,
            events=[Event(onset=0, duration=2, label=1,
                          chunk=1, features=[1000, 1001]),
                    Event(onset=1, duration=2, label=2,
                          chunk=1, features=[2000, 2001])])
    nfeatures = tds.nfeatures
    mask = np.zeros(dsmask.shape, dtype='bool')
    mask[0, 0, 0] = mask[1, 0, 1] = mask[0, 0, 1] = 1
    fmask = ds.a.mapper.forward1(mask.T)
    # select using mask in volume and all features in the other part
    ds_sel = ds[:, fmask]

    # now tests
    assert_array_equal(mask.reshape(24).nonzero()[0], [0, 1, 7])
    # two events, 2 orig features at 2 timepoints
    assert_equal(ds_sel.samples.shape, (2, 4))
    assert_array_equal(ds_sel.sa.features,
                       [[1000, 1001], [2000, 2001]])
    assert_array_equal(ds_sel.samples,
                       [[   1,    7,   25,   31],
                        [  25,   31,   49,   55]])
    # reproducability
    assert_array_equal(ds_sel.samples,
                       ds_sel.a.mapper.forward(np.rollaxis(samples.T, -1)))

    # reverse-mapping
    rmapped = ds_sel.a.mapper.reverse1(np.arange(10, 14))
    assert_equal(np.rollaxis(rmapped, 0, 4).T.shape, (2,) + sample_size)
    expected = np.zeros((2,)+sample_size, dtype='int')
    expected[0,0,0,1] = 10
    expected[0,1,0,1] = 11
    expected[1,0,0,1] = 12
    expected[1,1,0,1] = 13
    assert_array_equal(np.rollaxis(rmapped, 0, 4).T, expected)
Ejemplo n.º 3
0
def test_er_nifti_dataset():
    # setup data sources
    tssrc = os.path.join(pymvpa_dataroot, 'bold.nii.gz')
    evsrc = os.path.join(pymvpa_dataroot, 'fslev3.txt')
    masrc = os.path.join(pymvpa_dataroot, 'mask.nii.gz')
    evs = FslEV3(evsrc).to_events()
    # load timeseries
    ds_orig = fmri_dataset(tssrc)
    # segment into events
    ds = eventrelated_dataset(ds_orig, evs, time_attr='time_coords')

    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 3200)
    assert_equal(len(ds), len(evs))
    # the voxel indices are reflattened after boxcaring , but still 3D
    assert_equal(ds.fa.voxel_indices.shape, (ds.nfeatures, 3))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:800], ds.fa.voxel_indices[800:1600])
    # each feature got an event offset value
    assert_array_equal(ds.fa.event_offsetidx, np.repeat([0,1,2,3], 800))
    # check for all event attributes
    assert_true('onset' in ds.sa)
    assert_true('duration' in ds.sa)
    assert_true('features' in ds.sa)
    # check samples
    origsamples = _load_anyimg(tssrc)[0]
    for i, onset in \
        enumerate([value2idx(e['onset'], ds_orig.sa.time_coords, 'floor')
                        for e in evs]):
        assert_array_equal(ds.samples[i], origsamples[onset:onset+4].ravel())
        assert_array_equal(ds.sa.time_indices[i], np.arange(onset, onset + 4))
        assert_array_equal(ds.sa.time_coords[i],
                           np.arange(onset, onset + 4) * 2.5)
        for evattr in [a for a in ds.sa
                        if a.count("event_attrs")
                           and not a.count('event_attrs_event')]:
            assert_array_equal(evs[i]['_'.join(evattr.split('_')[2:])],
                               ds.sa[evattr].value[i])
    # check offset: only the last one exactly matches the tr
    assert_array_equal(ds.sa.orig_offset, [1, 1, 0])

    # map back into voxel space, should ignore addtional features
    nim = map2nifti(ds)
    # origsamples has t,x,y,z
    assert_equal(nim.get_shape(), origsamples.shape[1:] + (len(ds) * 4,))
    # check shape of a single sample
    nim = map2nifti(ds, ds.samples[0])
    # pynifti image has [t,]z,y,x
    assert_equal(nim.get_shape(), (40, 20, 1, 4))

    # and now with masking
    ds = fmri_dataset(tssrc, mask=masrc)
    ds = eventrelated_dataset(ds, evs, time_attr='time_coords')
    nnonzero = len(_load_anyimg(masrc)[0].nonzero()[0])
    assert_equal(nnonzero, 530)
    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 4 * 530)
    assert_equal(len(ds), len(evs))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:nnonzero],
                       ds.fa.voxel_indices[nnonzero:2*nnonzero])
Ejemplo n.º 4
0
def test_er_nifti_dataset():
    # setup data sources
    tssrc = os.path.join(pymvpa_dataroot, 'bold.nii.gz')
    evsrc = os.path.join(pymvpa_dataroot, 'fslev3.txt')
    masrc = os.path.join(pymvpa_dataroot, 'mask.nii.gz')
    evs = FslEV3(evsrc).to_events()
    # load timeseries
    ds_orig = fmri_dataset(tssrc)
    # segment into events
    ds = eventrelated_dataset(ds_orig, evs, time_attr='time_coords')

    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 3200)
    assert_equal(len(ds), len(evs))
    # the voxel indices are reflattened after boxcaring , but still 3D
    assert_equal(ds.fa.voxel_indices.shape, (ds.nfeatures, 3))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:800],
                       ds.fa.voxel_indices[800:1600])
    # each feature got an event offset value
    assert_array_equal(ds.fa.event_offsetidx, np.repeat([0, 1, 2, 3], 800))
    # check for all event attributes
    assert_true('onset' in ds.sa)
    assert_true('duration' in ds.sa)
    assert_true('features' in ds.sa)
    # check samples
    origsamples = _load_anyimg(tssrc)[0]
    for i, onset in \
        enumerate([value2idx(e['onset'], ds_orig.sa.time_coords, 'floor')
                        for e in evs]):
        assert_array_equal(ds.samples[i], origsamples[onset:onset + 4].ravel())
        assert_array_equal(ds.sa.time_indices[i], np.arange(onset, onset + 4))
        assert_array_equal(ds.sa.time_coords[i],
                           np.arange(onset, onset + 4) * 2.5)
        for evattr in [
                a for a in ds.sa
                if a.count("event_attrs") and not a.count('event_attrs_event')
        ]:
            assert_array_equal(evs[i]['_'.join(evattr.split('_')[2:])],
                               ds.sa[evattr].value[i])
    # check offset: only the last one exactly matches the tr
    assert_array_equal(ds.sa.orig_offset, [1, 1, 0])

    # map back into voxel space, should ignore addtional features
    nim = map2nifti(ds)
    if externals.exists('nibabel'):
        # origsamples has t,x,y,z
        assert_equal(nim.get_shape(), origsamples.shape[1:] + (len(ds) * 4, ))
        # check shape of a single sample
        nim = map2nifti(ds, ds.samples[0])
        # pynifti image has [t,]z,y,x
        assert_equal(nim.get_shape(), (40, 20, 1, 4))
    else:
        # origsamples has t,x,y,z but pynifti image has [t,]z,y,x
        assert_equal(nim.data.T.shape, origsamples.shape[1:] + (len(ds) * 4, ))
        # check shape of a single sample
        nim = map2nifti(ds, ds.samples[0])
        # pynifti image has [t,]z,y,x
        assert_equal(nim.data.T.shape, (40, 20, 1, 4))

    # and now with masking
    ds = fmri_dataset(tssrc, mask=masrc)
    ds = eventrelated_dataset(ds, evs, time_attr='time_coords')
    nnonzero = len(_load_anyimg(masrc)[0].nonzero()[0])
    assert_equal(nnonzero, 530)
    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 4 * 530)
    assert_equal(len(ds), len(evs))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:nnonzero],
                       ds.fa.voxel_indices[nnonzero:2 * nnonzero])
Ejemplo n.º 5
0
def test_erdataset():
    # 3 chunks, 5 targets, blocks of 5 samples each
    nchunks = 3
    ntargets = 5
    blocklength = 5
    nfeatures = 10
    targets = np.tile(np.repeat(range(ntargets), blocklength), nchunks)
    chunks = np.repeat(np.arange(nchunks), ntargets * blocklength)
    samples = np.repeat(
                np.arange(nchunks * ntargets * blocklength),
                nfeatures).reshape(-1, nfeatures)
    ds = dataset_wizard(samples, targets=targets, chunks=chunks)
    # check if events are determined properly
    evs = find_events(targets=ds.sa.targets, chunks=ds.sa.chunks)
    for ev in evs:
        assert_equal(ev['duration'], blocklength)
    assert_equal(ntargets * nchunks, len(evs))
    for t in range(ntargets):
        assert_equal(len([ev for ev in evs if ev['targets'] == t]),
                     nchunks)
    # now turn `ds` into an eventreleated dataset
    erds = eventrelated_dataset(ds, evs)
    # the only unprefixed sample attributes are 
    assert_equal(sorted([a for a in ds.sa if not a.startswith('event')]),
                 ['chunks', 'targets'])
    # samples as expected?
    assert_array_equal(erds.samples[0],
                       np.repeat(np.arange(blocklength), nfeatures))
    # that should also be the temporal feature offset
    assert_array_equal(erds.samples[0], erds.fa.event_offsetidx)
    assert_array_equal(erds.sa.event_onsetidx, np.arange(0,71,5))
    # finally we should see two mappers
    assert_equal(len(erds.a.mapper), 2)
    assert_true(isinstance(erds.a.mapper[0], BoxcarMapper))
    assert_true(isinstance(erds.a.mapper[1], FlattenMapper))
    #
    # now check the same dataset with event descretization
    tr = 2.5
    ds.sa['time'] = np.arange(nchunks * ntargets * blocklength) * tr
    evs = [{'onset': 4.9, 'duration': 6.2}]
    # doesn't work without conversion
    assert_raises(ValueError, eventrelated_dataset, ds, evs)
    erds = eventrelated_dataset(ds, evs, time_attr='time')
    assert_equal(len(erds), 1)
    assert_array_equal(erds.samples[0], np.repeat(np.arange(1,5), nfeatures))
    assert_array_equal(erds.sa.orig_onset, [evs[0]['onset']])
    assert_array_equal(erds.sa.orig_duration, [evs[0]['duration']])
    assert_array_almost_equal(erds.sa.orig_offset, [2.4])
    assert_array_equal(erds.sa.time, [np.arange(2.5, 11, 2.5)])
    # now with closest match
    erds = eventrelated_dataset(ds, evs, time_attr='time', match='closest')
    expected_nsamples = 3
    assert_equal(len(erds), 1)
    assert_array_equal(erds.samples[0],
                       np.repeat(np.arange(2,2+expected_nsamples),
                                nfeatures))
    assert_array_equal(erds.sa.orig_onset, [evs[0]['onset']])
    assert_array_equal(erds.sa.orig_duration, [evs[0]['duration']])
    assert_array_almost_equal(erds.sa.orig_offset, [-0.1])
    assert_array_equal(erds.sa.time, [np.arange(5.0, 11, 2.5)])
    # now test the way back
    results = np.arange(erds.nfeatures)
    assert_array_equal(erds.a.mapper.reverse1(results),
                       results.reshape(expected_nsamples, nfeatures))
    # what about multiple results?
    nresults = 5
    results = dataset_wizard([results] * nresults)
    # and let's have an attribute to make it more difficult
    results.sa['myattr'] = np.arange(5)
    rds = erds.a.mapper.reverse(results)
    assert_array_equal(rds,
                       results.samples.reshape(nresults * expected_nsamples,
                                               nfeatures))
    assert_array_equal(rds.sa.myattr, np.repeat(results.sa.myattr,
                                               expected_nsamples))