Ejemplo n.º 1
0
def load_eeg_dataset(path, filename, attrib, TR, eliminated_vols=None, **kwargs):
    """
    
    **kwargs:
    
       - type: 
              * 'psd': Power Spectrum Density using matplotlib.specgram
                       additional parameters to be included NFFT and noverlap
              * 'fft': Power Spectrum and Phase using scipy.fft
              * 'time': EEG timecourse in every TR. 
    """

    type = "time"

    for arg in kwargs:
        if arg == "type":
            type = kwargs[arg]

    print "type = " + type
    # load eeg data
    [data, eeg_info] = load_eeg_data(path, filename, TR, eliminatedVols=eliminated_vols)

    channel_ids = eeg_info["channel_ids"]
    dt = eeg_info["dt"]

    kwargs["dt"] = dt

    if (type == "psd") or (type == "fft"):
        [samples, freq] = spectrum_eeg(data, **kwargs)

        data = samples.reshape(samples.shape[0], samples.shape[1], -1)

    # mvpa analysis: attributes and dataset
    attr = SampleAttributes(attrib)
    print "Building dataset..."
    ds = Dataset.from_channeltimeseries(data, channelids=channel_ids, targets=attr.targets, chunks=attr.chunks)

    if (type == "psd") or (type == "fft"):
        ds.a["frequiencies"] = freq
        ds.a["shape"] = samples.shape

    ds.a["timepoints"] = np.arange(0, TR, dt)

    del data

    if "samples" in locals():
        del samples

    return ds
Ejemplo n.º 2
0
    for j in channelSelected:
        start = markers[i][1] + (onSet / dt)
        stop = start + (nSamples / dt)
        nVec = np.array(data.T[j][start:stop])
        if nVec.shape[0] != (nSamples / dt):
            nVec.resize(nSamples / dt)
            print "yes"
        dataRes[j][i] = nVec

# Select data based on channels Selected
dataResSel = np.take(dataRes, channelSelected, axis=0)
ch_infoSel = np.take(ch_info, channelSelected)

# reshape data to feed Dataset
dataResSel = np.reshape(dataResSel, (nTrials, -1, nSamples / dt))

# Eliminate first n. runs
volToEliminate = 5
dataResSel = dataResSel[: nTrials - volToEliminate]


# mvpa analysis: attributes and dataset
attr = SampleAttributes("/home/robbis/fmri_datasets/monks/monks_attrib_pymvpa.txt")

ds = Dataset.from_channeltimeseries(
    dataResSel, t0=0, dt=dt, channelids=ch_infoSel, targets=attr.targets, chunks=attr.chunks
)


del dataRes, dataResSel