Ejemplo n.º 1
0
    def test_clone_gp(self, dtype, X, X_isSamples, rbf_lengthscale,
                      rbf_lengthscale_isSamples, rbf_variance,
                      rbf_variance_isSamples, rv, rv_isSamples, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)

        m = Model()
        m.X_var = Variable(shape=(5, 2))
        m.Y = GaussianProcess.define_variable(X=m.X_var,
                                              kernel=rbf,
                                              shape=rv_shape,
                                              dtype=dtype)

        gp = m.clone().Y.factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
Ejemplo n.º 2
0
    def test_draw_samples(self, dtype, X, X_isSamples, rbf_lengthscale,
                          rbf_lengthscale_isSamples, rbf_variance,
                          rbf_variance_isSamples, rv_shape, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            L_np = np.linalg.cholesky(K_np)
            sample_np = L_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np)

        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
Ejemplo n.º 3
0
    def test_draw_samples_w_mean(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(np.random.rand(20 * D), dtype=dtype))

        m, net = self.gen_mxfusion_model_w_mean(dtype, D, noise_var,
                                                lengthscale, variance,
                                                rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(m,
                                                  observed,
                                                  num_samples=2,
                                                  target_variables=[m.Y]),
                         dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=kern,
                                             mean=mean_var,
                                             shape=(10, D),
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid:
            mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0),
            gp.add_rbf_lengthscale.uuid:
            mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0),
            gp.add_rbf_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0),
            gp.add_white_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0),
            mean_var.uuid:
            mx.nd.expand_dims(net(mx.nd.array(X, dtype=dtype)), axis=0)
        }
        samples_2 = gp.draw_samples(F=mx.nd,
                                    variables=variables,
                                    num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2)
Ejemplo n.º 4
0
    def test_draw_samples_w_mean(self, dtype, X, X_isSamples, rbf_lengthscale,
                                 rbf_lengthscale_isSamples, rbf_variance,
                                 rbf_variance_isSamples, rv_shape,
                                 num_samples):

        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(
                nn.Dense(rv_shape[-1],
                         flatten=False,
                         activation="tanh",
                         in_units=X.shape[-1],
                         dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        mean_mx = net(X_mx)
        mean_np = mean_mx.asnumpy()

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             mean=mean_var,
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.mean.uuid: mean_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            L_np = np.linalg.cholesky(K_np)
            sample_np = L_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np) + mean_np

        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
Ejemplo n.º 5
0
    def test_log_pdf_w_mean(self, dtype, X, X_isSamples, rbf_lengthscale,
                            rbf_lengthscale_isSamples, rbf_variance,
                            rbf_variance_isSamples, rv, rv_isSamples,
                            num_samples):

        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(
                nn.Dense(rv.shape[-1],
                         flatten=False,
                         activation="tanh",
                         in_units=X.shape[-1],
                         dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape
        mean_mx = net(X_mx)
        mean_np = mean_mx.asnumpy()

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             mean=mean_var,
                                             dtype=dtype).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx,
            gp.mean.uuid: mean_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rv_i = rv_i - mean_np[i] if X_isSamples else rv_i - mean_np[0]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
Ejemplo n.º 6
0
    def test_draw_samples(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(np.random.rand(20), dtype=dtype))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype,
                                           rand_gen=rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(m,
                                                  observed,
                                                  num_samples=2,
                                                  target_variables=[m.Y]),
                         dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=kern,
                                             shape=(10, 1),
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid:
            mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0),
            gp.add_rbf_lengthscale.uuid:
            mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0),
            gp.add_rbf_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0),
            gp.add_white_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0)
        }
        samples_2 = gp.draw_samples(F=mx.nd,
                                    variables=variables,
                                    num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2)