def match_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    """Assign ground-truth bounding boxes to anchor boxes similar to them."""
    num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]

    # Element `x_ij` in the `i^th` row and `j^th` column is the IoU
    # of the anchor box `anc_i` to the ground-truth bounding box `box_j`

    jaccard = box_iou(anchors, ground_truth)
    # Initialize the tensor to hold assigned ground truth bbox for each anchor
    anchors_bbox_map = np.full((num_anchors, ),
                               fill_value=-1,
                               dtype=np.int32,
                               ctx=device)
    # Assign ground truth bounding box according to the threshold
    max_ious, indices = np.max(jaccard, axis=1), np.argmax(jaccard, axis=1)

    anc_i = np.nonzero(max_ious >= iou_threshold)[0]
    box_j = indices[max_ious >= iou_threshold]
    anchors_bbox_map[anc_i] = box_j

    # Find the largest iou for each bbox
    col_discard = np.full((num_anchors, ), -1)
    row_discard = np.full((num_gt_boxes, ), -1)

    for _ in range(num_gt_boxes):
        max_idx = np.argmax(jaccard)
        box_idx = (max_idx % num_gt_boxes).astype('int32')
        anc_idx = (max_idx / num_gt_boxes).astype('int32')
        anchors_bbox_map[anc_idx] = box_idx
        jaccard[:, box_idx] = col_discard
        jaccard[anc_idx, :] = row_discard

    return anchors_bbox_map
def multibox_target(anchors, labels):
    batch_size, anchors = labels.shape[0], anchors.squeeze(0)
    batch_offset, batch_mask, batch_class_labels = [], [], []
    device, num_anchors = anchors.ctx, anchors.shape[0]
    print(labels.shape)
    print(batch_size)
    for i in range(batch_size):
        label = labels[i, :, :]
        anchors_bbox_map = match_anchor_to_bbox(label[:, 1:], anchors,
                                                device)  # [-1, 0, 1, -1 , 1]

        bbox_mask = np.tile((np.expand_dims((anchors_bbox_map >= 0), axis=-1)),
                            (1, 4)).astype('int32')
        # Initialize class_labels and assigned bbox coordinates with zeros
        class_labels = np.zeros(num_anchors, dtype=np.int32, ctx=device)
        assigned_bb = np.zeros((num_anchors, 4), dtype=np.float32, ctx=device)
        # Assign class labels to the anchor boxes using matched gt bbox labels
        # If no gt bbox is assigned to an anchor box, then let the
        # class_labels and assigned_bb remain zero, i.e the background class
        indices_true = np.nonzero(anchors_bbox_map >= 0)[0]  #[1,2,4]
        print(indices_true)
        bb_idx = anchors_bbox_map[indices_true]  #[0, 1, 1]
        class_labels[indices_true] = label[bb_idx, 0].astype(
            'int32') + 1  # Get category
        assigned_bb[indices_true] = label[bb_idx, 1:]  # Get ground-truth
        # offset transformations
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    bbox_offset = np.stack(batch_offset)
    bbox_mask = np.stack(batch_mask)
    class_labels = np.stack(batch_class_labels)
    return (bbox_offset, bbox_mask, class_labels)
def nms(boxes, scores, iou_threshold):
    # sorting scores by the descending order and return their indices
    B = scores.argsort()[::-1]
    keep = []  # boxes indices that will be kept
    while B.size > 0:
        i = B[0]  # Get max confidence
        keep.append(i)
        if B.size == 1: break
        iou = box_iou(boxes[i, :].reshape(-1, 4),
                      boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
        inds = np.nonzero(iou <= iou_threshold)[0]
        B = B[inds + 1]
    return np.array(keep, dtype=np.int32, ctx=boxes.ctx)
Ejemplo n.º 4
0
    def dnp_func(a, b=None, split_inputs=(), ret_type=list):
        """
        Dummy Doc:
        dnp_func is using the same np.xxx operators
        """
        ret_lst = []
        # unsupported indexing case
        ret_lst.append(a[:, a[1, :] > 0])
        # unsupported operator
        ret_lst.append(np.nonzero(b))
        # unsupported operator case
        ret_lst.append(tuple(np.split(split_inputs[0], split_inputs[1])))

        return ret_type(ret_lst)