Ejemplo n.º 1
0
def r_lstm(seq_len, num_hidden, C):
    import my_layer as ml

    T = seq_len
    cs = [S.Variable('c')]
    hs = [S.Variable('h')]
    preds = []
    datas = [S.Variable('data%d' % i) for i in range(T)]
    param = LSTMParam(x2g_weight=S.Variable("x2g_weight"),
                      x2g_bias=S.Variable("x2g_bias"),
                      h2g_weight=S.Variable("h2g_weight"),
                      h2g_bias=S.Variable("h2g_bias"),
                      Y_weight=S.Variable("Y_weight"),
                      Y_bias=S.Variable("Y_bias"))
    for t in range(T):
        pred, c, h = r_lstm_step(datas[t],
                                 num_hidden,
                                 C,
                                 c=cs[-1],
                                 h=hs[-1],
                                 param=param)
        pred = S.LogisticRegressionOutput(data=pred, name='logis%d' % t)

        if t != 0:
            useless = S.Custom(prev_data=preds[-1],
                               this_data=pred,
                               name='regloss',
                               op_type='regloss')

        preds.append(pred)
        cs.append(c)
        hs.append(h)
    return S.Group(preds)
Ejemplo n.º 2
0
def unroll_lstm(seq_len, num_hidden, C, H, W):
    T = seq_len
    cs = [S.Variable('c')]
    hs = [S.Variable('h')]
    preds = []
    datas = [S.Variable('data%d' % i) for i in range(T)]
    param = LSTMParam(i2h_weight=S.Variable("i2h_weight"),
                      i2h_bias=S.Variable("i2h_bias"),
                      h2h_weight=S.Variable("h2h_weight"),
                      h2h_bias=S.Variable("h2h_bias"),
                      Y_weight=S.Variable("Y_weight"),
                      Y_bias=S.Variable("Y_bias"))
    for t in range(T):
        pred, c, h = LSTM(datas[t],
                          num_hidden,
                          C,
                          H,
                          W,
                          c=cs[-1],
                          h=hs[-1],
                          param=param)
        pred = S.LogisticRegressionOutput(data=pred, name='logis%d' % t)
        preds.append(pred)
        cs.append(c)
        hs.append(h)
    return S.Group(preds)
Ejemplo n.º 3
0
 def train(self):
     return S.Group(self.last_states + [self.train_loss])
Ejemplo n.º 4
0
 def eval(self):
     return S.Group(self.last_states + [self.eval_loss])