Ejemplo n.º 1
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_ACFHead, self).__init__()
     with self.name_scope():
         self.aspp = ASPPModule(512,
                                in_channels,
                                norm_layer,
                                norm_kwargs,
                                rates=(12, 24, 36),
                                pool_branch=False)
         self.coarse_head = FCNHead(nclass,
                                    512,
                                    norm_layer=norm_layer,
                                    norm_kwargs=norm_kwargs)
         self.acf = _ACFModule(512,
                               512,
                               norm_layer=norm_layer,
                               norm_kwargs=norm_kwargs)
         self.head = FCNHead(nclass,
                             1024,
                             norm_layer=norm_layer,
                             norm_kwargs=norm_kwargs)
Ejemplo n.º 2
0
 def __init__(self,
              nclass,
              backbone='mobilenet_v2_1_0',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=True,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(FCNMobileNet, self).__init__(nclass,
                                        aux,
                                        backbone,
                                        height,
                                        width,
                                        base_size,
                                        crop_size,
                                        pretrained_base,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = FCNHead(nclass=nclass,
                             in_channels=self.stage_channels[3],
                             norm_layer=norm_layer,
                             norm_kwargs=norm_kwargs)
         if self.aux:
             self.aux_head = FCNHead(nclass=nclass,
                                     in_channels=self.stage_channels[2],
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
Ejemplo n.º 3
0
 def __init__(self,
              nclass,
              decoder_capacity,
              input_height,
              input_width,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_LadderHead, self).__init__()
     with self.name_scope():
         self.conv_c4 = ConvBlock(decoder_capacity,
                                  1,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs,
                                  activation='relu')
         self.fusion_c3 = LateralFusion(decoder_capacity,
                                        input_height // 16,
                                        input_width // 16,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
         self.fusion_c2 = LateralFusion(decoder_capacity,
                                        input_height // 8,
                                        input_width // 8,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
         self.fusion_c1 = LateralFusion(decoder_capacity,
                                        input_height // 4,
                                        input_width // 4,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
         self.seg_head = FCNHead(nclass, decoder_capacity, norm_layer,
                                 norm_kwargs)
Ejemplo n.º 4
0
 def __init__(self,
              nclass,
              backbone='densnet169',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(LadderDenseNet, self).__init__(nclass,
                                          aux,
                                          backbone,
                                          height,
                                          width,
                                          base_size,
                                          crop_size,
                                          pretrained_base,
                                          norm_layer=norm_layer,
                                          norm_kwargs=norm_kwargs)
     decoder_capacity = 128
     with self.name_scope():
         self.head = _LadderHead(nclass,
                                 decoder_capacity,
                                 norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs,
                                 input_height=self._up_kwargs['height'],
                                 input_width=self._up_kwargs['width'])
         if self.aux:
             self.auxlayer = FCNHead(nclass,
                                     in_channels=decoder_capacity,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
Ejemplo n.º 5
0
 def __init__(self,
              nclass,
              height=60,
              width=60,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              use_sigmoid=True):
     super(_AttentionHead, self).__init__()
     self.sigmoid = use_sigmoid
     self.up_kwargs = {'height': height, 'width': width}
     with self.name_scope():
         self.seg_head = FCNHead(nclass,
                                 norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs)
         self.conv3x3 = ConvBlock(512,
                                  3,
                                  1,
                                  1,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs,
                                  activation='relu')
         if use_sigmoid:
             self.conv1x1 = nn.Conv2D(1, 1, in_channels=512)
         else:
             self.conv1x1 = nn.Conv2D(2, 1, in_channels=512)
Ejemplo n.º 6
0
 def __init__(self,
              nclass,
              input_height,
              input_width,
              capacity=256,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_NextHead, self).__init__()
     with self.name_scope():
         self.conv_c4 = ConvBlock(capacity,
                                  1,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
         self.fusion_16x = LateralFusion(capacity,
                                         input_height // 16,
                                         input_width // 16,
                                         norm_layer=norm_layer,
                                         norm_kwargs=norm_kwargs)
         self.fusion_8x = LateralFusion(capacity,
                                        input_height // 8,
                                        input_width // 8,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
         self.seg_head = FCNHead(nclass,
                                 norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs)
Ejemplo n.º 7
0
 def __init__(self,
              nclass,
              backbone='resnet50',
              aux=False,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=True,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(UNet, self).__init__(nclass,
                                aux,
                                backbone,
                                height,
                                width,
                                base_size,
                                crop_size,
                                pretrained_base,
                                dilate=False,
                                norm_layer=norm_layer,
                                norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _NextHead(nclass,
                               self._up_kwargs['height'],
                               self._up_kwargs['width'],
                               norm_layer=norm_layer,
                               norm_kwargs=norm_kwargs)
         if self.aux:
             self.auxlayer = FCNHead(nclass,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
Ejemplo n.º 8
0
 def __init__(self,
              nclass,
              backbone='resnet50',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(PSPNet, self).__init__(nclass,
                                  aux,
                                  backbone,
                                  height,
                                  width,
                                  base_size,
                                  crop_size,
                                  pretrained_base,
                                  dilate=True,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _PyramidHead(nclass,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs,
                                  height=self._up_kwargs['height'] // 8,
                                  width=self._up_kwargs['width'] // 8)
         if self.aux:
             self.auxlayer = FCNHead(nclass=nclass,
                                     in_channels=1024,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
Ejemplo n.º 9
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_DeepLabHead, self).__init__()
     with self.name_scope():
         self.aspp = ASPPModule(256,
                                in_channels,
                                norm_layer,
                                norm_kwargs,
                                rates=(12, 24, 36))
         self.conv_c1 = ConvModule2d(48,
                                     3,
                                     1,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.conv3x3 = ConvModule2d(256,
                                     3,
                                     1,
                                     1,
                                     in_channels=304,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.drop = nn.Dropout(0.5)
         self.head = FCNHead(nclass, 256, norm_layer, norm_kwargs)
Ejemplo n.º 10
0
 def __init__(self,
              nclass,
              backbone='resnet18',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(SwiftResNet, self).__init__(nclass,
                                       aux,
                                       backbone,
                                       height,
                                       width,
                                       base_size,
                                       crop_size,
                                       pretrained_base,
                                       dilate=False,
                                       norm_layer=norm_layer,
                                       norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _SwiftNetHead(nclass,
                                   self.base_channels[3],
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs,
                                   input_height=self._up_kwargs['height'],
                                   input_width=self._up_kwargs['width'])
         if self.aux:
             self.auxlayer = FCNHead(nclass,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
Ejemplo n.º 11
0
    def __init__(self,
                 nclass,
                 backbone='resnet50',
                 aux=False,
                 height=None,
                 width=None,
                 base_size=520,
                 crop_size=480,
                 pretrained_base=True,
                 norm_layer=nn.BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(FaPN, self).__init__(nclass,
                                   aux,
                                   backbone,
                                   height,
                                   width,
                                   base_size,
                                   crop_size,
                                   pretrained_base,
                                   dilate=False,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)

        with self.name_scope():
            self.head = _FaPNHead(nclass,
                                  self.stage_channels,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
            if self.aux:
                self.aux_head = FCNHead(nclass,
                                        norm_layer=norm_layer,
                                        norm_kwargs=norm_kwargs)
Ejemplo n.º 12
0
 def __init__(self,
              nclass,
              backbone='resnet50',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(DenseASPP, self).__init__(nclass,
                                     aux,
                                     backbone,
                                     height,
                                     width,
                                     base_size,
                                     crop_size,
                                     pretrained_base,
                                     dilate=True,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _DenseASPPHead(nclass, 2048, norm_layer, norm_kwargs)
         if self.aux:
             self.auxlayer = FCNHead(nclass, 1024, norm_layer, norm_kwargs)
Ejemplo n.º 13
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              height=60,
              width=60):
     super(_DeepLabHead, self).__init__()
     self.up_kwargs = {'height': height, 'width': width}
     with self.name_scope():
         self.aspp = ASPP(256,
                          in_channels,
                          norm_layer,
                          norm_kwargs,
                          height // 2,
                          width // 2,
                          atrous_rates=(12, 24, 36))
         self.conv_c1 = ConvBlock(48,
                                  3,
                                  1,
                                  1,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
         self.conv3x3 = ConvBlock(256,
                                  3,
                                  1,
                                  1,
                                  in_channels=304,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
         self.drop = nn.Dropout(0.5)
         self.head = FCNHead(nclass, 256, norm_layer, norm_kwargs)
Ejemplo n.º 14
0
 def __init__(self, nclass, capacity=512, attention=False, drop=.5,
              norm_layer=nn.BatchNorm, norm_kwargs=None, height=120, width=120):
     super(_CAHead, self).__init__()
     self.up_kwargs = {'height': height, 'width': width}
     self.attention = attention
     self.gamma = 1.0
     height = height // 2
     width = width // 2
     with self.name_scope():
         # Chained Context Aggregation Module
         self.gp = GlobalFlow(capacity, 2048, height, width, norm_layer, norm_kwargs)
         self.cp1 = _ContextFlow(capacity, stride=2, norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs, height=height, width=width)
         self.cp2 = _ContextFlow(capacity, stride=4, norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs, height=height, width=width)
         self.cp3 = _ContextFlow(capacity, stride=8, norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs, height=height, width=width)
         self.cp4 = _ContextFlow(capacity, stride=16, norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs, height=height, width=width)
         if self.attention:
             self.selection = _FeatureSelection(256, in_channels=capacity, norm_layer=norm_layer,
                                                norm_kwargs=norm_kwargs)
         else:
             self.proj = ConvBlock(256, 3, 1, 1, in_channels=capacity, norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
         self.drop = nn.Dropout(drop) if drop else None
         # decoder
         self.decoder = ConvBlock(48, 3, 1, 1, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
         self.conv3x3 = ConvBlock(256, 3, 1, 1, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
         # segmentation head
         self.seg_head = FCNHead(nclass, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
Ejemplo n.º 15
0
    def __init__(self,
                 nclass,
                 in_channels,
                 input_height,
                 input_width,
                 capacity=256,
                 norm_layer=nn.BatchNorm,
                 norm_kwargs=None):
        super(_SwiftNetHead, self).__init__()
        with self.name_scope():
            self.ppool = PyramidPooling(in_channels, input_height // 32,
                                        input_width // 32, norm_layer,
                                        norm_kwargs)
            self.conv_c4 = ConvBlock(capacity,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)

            self.fusion_c3 = LateralFusion(capacity,
                                           input_height // 16,
                                           input_width // 16,
                                           norm_layer=norm_layer,
                                           norm_kwargs=norm_kwargs)
            self.fusion_c2 = LateralFusion(capacity,
                                           input_height // 8,
                                           input_width // 8,
                                           norm_layer=norm_layer,
                                           norm_kwargs=norm_kwargs)
            self.fusion_c1 = LateralFusion(capacity,
                                           input_height // 4,
                                           input_width // 4,
                                           norm_layer=norm_layer,
                                           norm_kwargs=norm_kwargs)
            self.seg_head = FCNHead(nclass, capacity, norm_layer, norm_kwargs)
Ejemplo n.º 16
0
 def __init__(self,
              nclass,
              backbone='xception65',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=True,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(DeepLabv3Plus, self).__init__(nclass,
                                         aux,
                                         backbone,
                                         height,
                                         width,
                                         base_size,
                                         crop_size,
                                         pretrained_base,
                                         dilate=True,
                                         norm_layer=norm_layer,
                                         norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _DeepLabHead(nclass,
                                  2048,
                                  norm_layer,
                                  norm_kwargs,
                                  height=self._up_kwargs['height'] // 4,
                                  width=self._up_kwargs['width'] // 4)
         if self.aux:
             self.auxlayer = FCNHead(nclass, 728, norm_layer, norm_kwargs)
Ejemplo n.º 17
0
 def __init__(self,
              nclass,
              backbone='resnet50',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              dilate=True,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(DeepLabv3, self).__init__(nclass,
                                     aux,
                                     backbone,
                                     height,
                                     width,
                                     base_size,
                                     crop_size,
                                     pretrained_base,
                                     dilate,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
     self.output_stride = 8 if dilate else 32
     with self.name_scope():
         self.head = _DeepLabHead(nclass, self.stage_channels[3],
                                  norm_layer, norm_kwargs)
         if self.aux:
             self.aux_head = FCNHead(nclass, self.stage_channels[2],
                                     norm_layer, norm_kwargs)
Ejemplo n.º 18
0
 def __init__(self,
              nclass,
              channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_DFPModule, self).__init__()
     with self.name_scope():
         self.blk_4 = ConvModule2d(channels,
                                   3,
                                   1,
                                   1,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
         self.blk_3 = ConvModule2d(channels,
                                   3,
                                   1,
                                   1,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
         self.blk_2 = ConvModule2d(channels,
                                   3,
                                   1,
                                   1,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
         self.blk_1 = ConvModule2d(channels,
                                   3,
                                   1,
                                   1,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
         self.head = FCNHead(nclass,
                             channels * 5,
                             norm_layer=norm_layer,
                             norm_kwargs=norm_kwargs)
Ejemplo n.º 19
0
 def __init__(self,
              nclass,
              input_height,
              input_width,
              capacity=128,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_SwiftNetHead, self).__init__()
     with self.name_scope():
         self.conv1x1 = ConvBlock(capacity,
                                  1,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
         self.fusion_32x = _LateralFusion(capacity,
                                          input_height // 32,
                                          input_width // 32,
                                          norm_layer=norm_layer,
                                          norm_kwargs=norm_kwargs)
         self.fusion_16x = _LateralFusion(capacity,
                                          input_height // 16,
                                          input_width // 16,
                                          norm_layer=norm_layer,
                                          norm_kwargs=norm_kwargs)
         self.fusion_8x = _LateralFusion(capacity,
                                         input_height // 8,
                                         input_width // 8,
                                         norm_layer=norm_layer,
                                         norm_kwargs=norm_kwargs)
         self.final = _LateralFusion(capacity,
                                     input_height // 4,
                                     input_width // 4,
                                     True,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.seg_head = FCNHead(nclass, capacity, norm_layer, norm_kwargs)
Ejemplo n.º 20
0
 def __init__(self,
              nclass,
              backbone='resnet18',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(BiSeNet, self).__init__(nclass,
                                   aux,
                                   backbone,
                                   height,
                                   width,
                                   base_size,
                                   crop_size,
                                   pretrained_base,
                                   dilate=False,
                                   norm_layer=norm_layer,
                                   norm_kwargs=norm_kwargs)
     self.head = _BiSeNetHead(nclass,
                              norm_layer=norm_layer,
                              norm_kwargs=norm_kwargs,
                              height=self._up_kwargs['height'] // 8,
                              width=self._up_kwargs['width'] // 8)
     if self.aux:
         self.auxlayer = FCNHead(nclass,
                                 norm_layer=norm_layer,
                                 norm_kwargs=norm_kwargs,
                                 drop_out=.0)
Ejemplo n.º 21
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_DenseASPPHead, self).__init__()
     with self.name_scope():
         self.dense_aspp = DenseASPPBlock(256, in_channels, norm_layer,
                                          norm_kwargs)
         self.head = FCNHead(nclass, 256, norm_layer, norm_kwargs)
Ejemplo n.º 22
0
 def __init__(self, nclass, norm_layer=nn.BatchNorm, norm_kwargs=None):
     super(_AttaNetHead, self).__init__()
     with self.name_scope():
         self.afm = _AttentionFusionModule(128, norm_layer, norm_kwargs)
         self.conv3x3 = ConvModule2d(128,
                                     3,
                                     1,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.sam = _StripAttentionModule(128, norm_layer, norm_kwargs)
         self.seg = FCNHead(nclass, 128, norm_layer, norm_kwargs)
Ejemplo n.º 23
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_DeepLabHead, self).__init__()
     with self.name_scope():
         self.aspp = ASPPModule(256,
                                in_channels,
                                norm_layer,
                                norm_kwargs,
                                rates=(6, 12, 18))
         self.head = FCNHead(nclass, 256, norm_layer, norm_kwargs)
Ejemplo n.º 24
0
    def __init__(self,
                 nclass,
                 backbone='xception39',
                 aux=True,
                 height=None,
                 width=None,
                 base_size=520,
                 crop_size=480,
                 pretrained_base=False,
                 norm_layer=nn.BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(BiSeNetX, self).__init__(nclass, aux, height, width, base_size,
                                       crop_size)
        assert backbone == 'xception39', 'support only xception39 as the backbone.'
        pretrained = xception39(pretrained_base,
                                norm_layer=norm_layer,
                                norm_kwargs=norm_kwargs)
        with self.name_scope():
            self.conv = pretrained.conv1
            self.max_pool = pretrained.maxpool
            self.layer1 = pretrained.layer1
            self.layer2 = pretrained.layer2
            self.layer3 = pretrained.layer3

            self.head = _BiSeNetHead(nclass,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
            if self.aux:
                self.aux_head = HybridConcurrentIsolate()
                self.aux_head.add(
                    FCNHead(nclass,
                            norm_layer=norm_layer,
                            norm_kwargs=norm_kwargs),
                    FCNHead(nclass,
                            norm_layer=norm_layer,
                            norm_kwargs=norm_kwargs))
Ejemplo n.º 25
0
 def __init__(self,
              nclass,
              backbone='resnet18',
              aux=True,
              height=None,
              width=None,
              base_size=520,
              crop_size=480,
              pretrained_base=False,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(BiSeNetR, self).__init__(nclass,
                                    aux,
                                    backbone,
                                    height,
                                    width,
                                    base_size,
                                    crop_size,
                                    pretrained_base,
                                    dilate=False,
                                    norm_layer=norm_layer,
                                    norm_kwargs=norm_kwargs)
     with self.name_scope():
         self.head = _BiSeNetHead(nclass,
                                  norm_layer=norm_layer,
                                  norm_kwargs=norm_kwargs)
         if self.aux:
             self.aux_head = HybridConcurrentIsolate()
             self.aux_head.add(
                 FCNHead(nclass,
                         norm_layer=norm_layer,
                         norm_kwargs=norm_kwargs),
                 FCNHead(nclass,
                         norm_layer=norm_layer,
                         norm_kwargs=norm_kwargs))
Ejemplo n.º 26
0
 def __init__(self,
              nclass,
              in_channels,
              capacity=256,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_SwiftNetHead, self).__init__()
     with self.name_scope():
         self.ppool = PPModule(in_channels, norm_layer, norm_kwargs)
         self.conv_c4 = ConvModule2d(capacity,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.fusion_c3 = LateralFusion(capacity, norm_layer, norm_kwargs)
         self.fusion_c2 = LateralFusion(capacity, norm_layer, norm_kwargs)
         self.fusion_c1 = LateralFusion(capacity, norm_layer, norm_kwargs)
         self.seg_head = FCNHead(nclass, capacity, norm_layer, norm_kwargs)
Ejemplo n.º 27
0
 def __init__(self,
              nclass,
              in_channels,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              height=60,
              width=60):
     super(_DeepLabHead, self).__init__()
     with self.name_scope():
         self.aspp = ASPP(256,
                          in_channels,
                          norm_layer,
                          norm_kwargs,
                          height,
                          width,
                          atrous_rates=(12, 24, 36))
         self.head = FCNHead(nclass, 256, norm_layer, norm_kwargs)
Ejemplo n.º 28
0
 def __init__(self,
              nclass,
              height,
              width,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None,
              activation='relu'):
     super(_PyramidHead, self).__init__()
     with self.name_scope():
         self.pool = PyramidPooling(2048,
                                    height,
                                    width,
                                    norm_layer,
                                    norm_kwargs,
                                    activation,
                                    reduction=4)
         self.seg_head = FCNHead(nclass, 4096, norm_layer, norm_kwargs)
Ejemplo n.º 29
0
 def __init__(self,
              nclass,
              capacity=128,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_SwiftNetHead, self).__init__()
     with self.name_scope():
         self.conv1x1 = ConvModule2d(capacity,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.fusion_32x = _LateralFusion(capacity, norm_layer, norm_kwargs)
         self.fusion_16x = _LateralFusion(capacity, norm_layer, norm_kwargs)
         self.fusion_8x = _LateralFusion(capacity, norm_layer, norm_kwargs)
         self.final = _LateralFusion(capacity,
                                     norm_layer,
                                     norm_kwargs,
                                     is_final=True)
         self.seg_head = FCNHead(nclass, capacity, norm_layer, norm_kwargs)
Ejemplo n.º 30
0
 def __init__(self,
              nclass,
              decoder_capacity,
              norm_layer=nn.BatchNorm,
              norm_kwargs=None):
     super(_LadderHead, self).__init__()
     with self.name_scope():
         self.conv_c4 = ConvModule2d(decoder_capacity,
                                     1,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs)
         self.fusion_c3 = LateralFusion(decoder_capacity, norm_layer,
                                        norm_kwargs)
         self.fusion_c2 = LateralFusion(decoder_capacity, norm_layer,
                                        norm_kwargs)
         self.fusion_c1 = LateralFusion(decoder_capacity, norm_layer,
                                        norm_kwargs)
         self.seg_head = FCNHead(nclass, decoder_capacity, norm_layer,
                                 norm_kwargs)