Ejemplo n.º 1
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 **kwargs):
        root = root if root is not None else os.path.join(
            dataset_dir(), 'NYUv2')
        super(NYUv2, self).__init__(root, split, mode, transform, **kwargs)
        _img_dir = os.path.join(root, 'images')
        _mask_dir = os.path.join(root, 'labels40')
        if split == 'train':
            _split_f = os.path.join(root, 'train.txt')
        elif split == 'val':
            _split_f = os.path.join(root, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split: {}'.format(split))

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), 'r') as lines:
            for line in lines:
                _image = os.path.join(_img_dir, line.strip() + '.jpg')
                assert os.path.isfile(_image)
                self.images.append(_image)

                _mask = os.path.join(_mask_dir, line.strip() + '.png')
                assert os.path.isfile(_mask)
                self.masks.append(_mask)
        assert len(self.images) == len(self.masks)
Ejemplo n.º 2
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'COCO')
     super(MSCOCO, self).__init__(root, split, mode, transform, **kwargs)
     try_import_pycocotools()
     from pycocotools.coco import COCO
     from pycocotools import mask
     if split == 'train':
         print('train set')
         ann_file = os.path.join(root,
                                 'annotations/instances_train2017.json')
         ids_file = os.path.join(root, 'annotations/train_ids.mx')
         self.root = os.path.join(root, 'train2017')
     else:
         print('val set')
         ann_file = os.path.join(root, 'annotations/instances_val2017.json')
         ids_file = os.path.join(root, 'annotations/val_ids.mx')
         self.root = os.path.join(root, 'val2017')
     self.coco = COCO(ann_file)
     self.coco_mask = mask
     if os.path.exists(ids_file):
         with open(ids_file, 'rb') as f:
             self.ids = pickle.load(f)
     else:
         ids = list(self.coco.imgs.keys())
         self.ids = self._preprocess(ids, ids_file)
     self.transform = transform
Ejemplo n.º 3
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 **kwargs):
        root = root if root is not None else os.path.join(
            dataset_dir(), 'VOCdevkit', 'VOCAug')
        super(PascalVOCAug, self).__init__(root, split, mode, transform,
                                           **kwargs)
        _img_dir = os.path.join(root, 'img_aug')
        _mask_dir = os.path.join(root, 'cls_aug')
        if split == 'train':
            # _split_f = os.path.join(root, 'trainval_aug.txt')
            _split_f = os.path.join(root, 'train_aug.txt')
        elif split == 'val':
            _split_f = os.path.join(root, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split: {}'.format(split))

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), 'r') as lines:
            for line in lines:
                _image_name, _mask_name = line.strip().split(' ')
                _image = os.path.join(_img_dir, _image_name)
                assert os.path.isfile(_image)
                self.images.append(_image)
                _mask = os.path.join(_mask_dir, _mask_name)
                assert os.path.isfile(_mask)
                self.masks.append(_mask)

        assert len(self.images) == len(self.masks)
Ejemplo n.º 4
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 **kwargs):
        root = root if root is not None else os.path.join(
            dataset_dir(), 'WeizHorses')
        super(WeizmannHorses, self).__init__(root, split, mode, transform,
                                             **kwargs)
        _img_dir = os.path.join(root, 'horse')
        _mask_dir = os.path.join(root, 'mask')
        if split == 'train':
            _split_f = os.path.join(root, 'train.txt')
        elif split == 'val':
            _split_f = os.path.join(root, 'val.txt')
        else:
            raise RuntimeError(f'Unknown dataset split: {split}')

        self.images = []
        self.masks = []
        with open(_split_f, 'r') as lines:
            for line in lines:
                _img = os.path.join(_img_dir, line.strip())
                assert os.path.isfile(_img)
                self.images.append(_img)
                _mask = os.path.join(_mask_dir, line.strip())
                assert os.path.isfile(_mask)
                self.masks.append(_mask)
        assert len(self.images) == len(self.masks)
Ejemplo n.º 5
0
    def __init__(self, root=None, split='train', mode=None, transform=None, **kwargs):
        root = root if root is not None else os.path.join(dataset_dir(), 'VOCdevkit', 'SBD')
        super(SBD, self).__init__(root, split, mode, transform, **kwargs)
        # train/val/test splits are pre-cut
        _mask_dir = os.path.join(root, 'cls')
        _image_dir = os.path.join(root, 'img')
        if split == 'train':
            _split_f = os.path.join(root, 'trainval.txt')
            # _split_f = os.path.join(root, 'train.txt')
        elif split == 'val':
            _split_f = os.path.join(root, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split: {}'.format(split))

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), "r") as lines:
            for line in lines:
                _image = os.path.join(_image_dir, line.rstrip('\n') + ".jpg")
                assert os.path.isfile(_image)
                self.images.append(_image)
                _mask = os.path.join(_mask_dir, line.rstrip('\n') + ".mat")
                assert os.path.isfile(_mask)
                self.masks.append(_mask)

        assert (len(self.images) == len(self.masks))
Ejemplo n.º 6
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 **kwargs):
        root = root if root is not None else os.path.join(
            dataset_dir(), 'Aeroscapes')
        super(Aeroscapes, self).__init__(root, split, mode, transform,
                                         **kwargs)
        _img_dir = os.path.join(root, 'JPEGImages')
        _mask_dir = os.path.join(root, 'SegmentationClass')
        _splits_dir = os.path.join(root, 'ImageSets')
        if split == 'train':
            _split_f = os.path.join(_splits_dir, 'trn.txt')
        elif split == 'val':
            _split_f = os.path.join(_splits_dir, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split.')

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f, ), 'r') as lines:
            for line in lines:
                _image = os.path.join(_img_dir, line.rstrip('\n') + '.jpg')
                assert os.path.isfile(_image)
                self.images.append(_image)
                _mask = os.path.join(_mask_dir, line.rstrip('\n') + ".png")
                assert os.path.isfile(_mask)
                self.masks.append(_mask)
        assert len(self.images) == len(self.masks)
Ejemplo n.º 7
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'Mapillary')
     super(Mapillary, self).__init__(root, split, mode, transform, **kwargs)
     self.images, self.masks = _get_mapi_pairs(self.root, self.split)
Ejemplo n.º 8
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'BDD', 'seg')
     super(BDD100K, self).__init__(root, split, mode, transform, **kwargs)
     self.images, self.masks = _get_bdd_pairs(root, self.split)
     if split in ('train', 'val'):
         assert (len(self.images) == len(self.masks))
Ejemplo n.º 9
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'Cityscapes')
     super(CityCoarse, self).__init__(root, split, mode, transform,
                                      **kwargs)
     assert self.mode in ('train', 'val')
     self.images, self.masks = _get_city_pairs(self.root, self.split)
     assert (len(self.images) == len(self.masks))
Ejemplo n.º 10
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'ADE20K/ADEChallengeData2016')
     super(ADE20K, self).__init__(root, split, mode, transform, **kwargs)
     self.images, self.masks = _get_ade20k_pairs(root, split)
     assert (len(self.images) == len(self.masks))
     if len(self.images) == 0:
         raise (RuntimeError("Found 0 images in sub-folders of: " + root +
                             "\n"))
Ejemplo n.º 11
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              base_size=768,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'MHP', 'v1')
     super(MHPV1, self).__init__(root, split, mode, transform, base_size,
                                 **kwargs)
     self.images, self.masks = _get_mhp_pairs(root, split)
     assert (len(self.images) == len(self.masks))
     if len(self.images) == 0:
         raise (RuntimeError("Found 0 images in sub-folders of: " + root +
                             "\n"))
Ejemplo n.º 12
0
 def __init__(self,
              root=None,
              split='train',
              mode=None,
              transform=None,
              **kwargs):
     root = root if root is not None else os.path.join(
         dataset_dir(), 'Cityscapes')
     super(Cityscapes, self).__init__(root, split, mode, transform,
                                      **kwargs)
     self.images, self.mask_paths = _get_city_pairs(self.root, self.split)
     assert (len(self.images) == len(self.mask_paths))
     self.valid_classes = [
         7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31,
         32, 33
     ]
     self._key = np.array([
         -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, -1, -1, 2, 3, 4, -1, -1, -1,
         5, -1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, 16, 17, 18
     ])
     self._mapping = np.array(range(-1, len(self._key) - 1)).astype('int32')
Ejemplo n.º 13
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 full_resolution=True,
                 **kwargs):
        base_dir = 'CamVidFull' if full_resolution else 'CamVid'
        root = root if root is not None else os.path.join(
            dataset_dir(), base_dir)
        super(CamVid, self).__init__(root, split, mode, transform, **kwargs)
        _img_dir = os.path.join(root, 'images')
        _mask_dir = os.path.join(root, 'labels')
        if split == 'train':
            _split_f = os.path.join(root, 'trainval.txt')
            print(f'Training list: {_split_f}')
        elif split == 'val':
            _split_f = os.path.join(root, 'test.txt')
            print(f'Validation list: {_split_f}')
        elif split == 'test':
            _split_f = os.path.join(root, 'test.txt')
        else:
            raise RuntimeError(f'Unknown dataset split: {split}')

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), 'r') as lines:
            for line in lines:
                _img_name, _mask_name = line.strip().split(' ')

                _image = os.path.join(_img_dir, _img_name)
                assert os.path.isfile(_image)
                self.images.append(_image)

                _mask = os.path.join(_mask_dir, _mask_name)
                assert os.path.isfile(_mask)
                self.masks.append(_mask)
        assert len(self.images) == len(self.masks)
Ejemplo n.º 14
0
    def __init__(self,
                 root=None,
                 split='train',
                 mode=None,
                 transform=None,
                 **kwargs):
        root = root if root is not None else os.path.join(
            dataset_dir(), 'VOCdevkit', 'VOC2012')
        super(PascalVOC, self).__init__(root, split, mode, transform, **kwargs)
        _mask_dir = os.path.join(root, 'SegmentationClass')
        _image_dir = os.path.join(root, 'JPEGImages')
        # train/val/test splits are pre-cut
        _splits_dir = os.path.join(root, 'ImageSets/Segmentation')
        if split == 'train':
            _split_f = os.path.join(_splits_dir, 'trainval.txt')
            # _split_f = os.path.join(_splits_dir, 'train.txt')
        elif split == 'val':
            _split_f = os.path.join(_splits_dir, 'val.txt')
        elif split == 'test':
            _split_f = os.path.join(_splits_dir, 'test.txt')
        else:
            raise RuntimeError('Unknown dataset split.')

        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), "r") as lines:
            for line in lines:
                _image = os.path.join(_image_dir, line.rstrip('\n') + ".jpg")
                assert os.path.isfile(_image)
                self.images.append(_image)
                if split != 'test':
                    _mask = os.path.join(_mask_dir, line.rstrip('\n') + ".png")
                    assert os.path.isfile(_mask)
                    self.masks.append(_mask)

        if split != 'test':
            assert (len(self.images) == len(self.masks))