def train(param=PARAMS, sv=SOLVE, small=False): sv['name'] = __file__.rstrip('.py') input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var out = get(1) from my_layer import LSTM sym = LSTM(e_net.l3_4, 64*64, 1, 64, 64) sym = list(sym) sym[0] = mx.sym.LogisticRegressionOutput(data=sym[0], name='softmax') sym = mx.symbol.Group(list(sym)) param['eval_data'] = out['val'] param['marks'] = param['e_marks'] = out['marks'] param['ctx'] = mu.gpu(1) print out['train'].label[0][1].shape s = Solver(sym, out['train'], sv, **param) s.train() s.predict()
def train(param=PARAMS, sv=SOLVE, small=False): sv['name'] = __file__.rstrip('.py') input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var out = get(1) from my_layer import LSTM sym = LSTM(e_net.l3_4, 64 * 64, 1, 64, 64) sym = list(sym) sym[0] = mx.sym.LogisticRegressionOutput(data=sym[0], name='softmax') sym = mx.symbol.Group(list(sym)) param['eval_data'] = out['val'] param['marks'] = param['e_marks'] = out['marks'] param['ctx'] = mu.gpu(1) print out['train'].label[0][1].shape s = Solver(sym, out['train'], sv, **param) s.train() s.predict()
def train(base_model, param=PARAMS, sv=SOLVE, small=False): # prepare data if small: files = rnn_load.f10 param['ctx'] = mu.gpu(1) else: files = rnn_load.files imgs, labels = rnn_load.load_rnn_pk(files) it, lt, iv, lv = mu.prepare_set(imgs, labels) N, T = it.shape[:2] # cnn process model = mx.model.FeedForward.load(*base_model, ctx=mu.gpu(1)) rnn_input = np.zeros_like(it) for n in range(1): rnn_input[n], imgs, labels = mu.predict_draw(model, it[n]) # prepare params #datas = [rnn_input, lt, iv, lv] datas = [ lt, lt, lv, lv] for i, d in enumerate(datas): #datas[i] = np.transpose(d,axes=(1,0,2,3,4)) # make T become one datas[i] = d.reshape((-1,1)+d.shape[2:]) iters = rnn_load.create_rnn_iter(*datas, batch_size=1, num_hidden=1000) param['eval_data'] = iters[1] mark = param['marks'] = param['e_marks'] = [1]*T rnet = rnn_net(begin=mx.sym.Variable('data'), num_hidden=1000) s = Solver(rnet, iters[0], sv, **param) # train print 'Start Training...' s.train() s.predict()
def train(base_model, param=PARAMS, sv=SOLVE, small=False): # prepare data if small: files = rnn_load.f10 param['ctx'] = mu.gpu(1) else: files = rnn_load.files imgs, labels = rnn_load.load_rnn_pk(files) it, lt, iv, lv = mu.prepare_set(imgs, labels) N, T = it.shape[:2] # cnn process model = mx.model.FeedForward.load(*base_model, ctx=mu.gpu(1)) rnn_input = np.zeros_like(it) for n in range(1): rnn_input[n], imgs, labels = mu.predict_draw(model, it[n]) # prepare params #datas = [rnn_input, lt, iv, lv] datas = [lt, lt, lv, lv] for i, d in enumerate(datas): #datas[i] = np.transpose(d,axes=(1,0,2,3,4)) # make T become one datas[i] = d.reshape((-1, 1) + d.shape[2:]) iters = rnn_load.create_rnn_iter(*datas, batch_size=1, num_hidden=1000) param['eval_data'] = iters[1] mark = param['marks'] = param['e_marks'] = [1] * T rnet = rnn_net(begin=mx.sym.Variable('data'), num_hidden=1000) s = Solver(rnet, iters[0], sv, **param) # train print 'Start Training...' s.train() s.predict()
def main(): net = cnn_net() img, ll = u.load_pk('../DATA/PK/o1.pk') ival, lval = u.augment_sunny(img[:5], ll[:5]) val = mx.io.NDArrayIter(ival, label=lval) model = mx.model.FeedForward.load( *Aug40, ctx=u.gpu(1), learning_rate=6, num_epoch=10, optimizer='sgd', initializer=mx.initializer.Xavier(rnd_type='gaussian')) u.predict_draw(model, val, folder='MoveCheck')
init_h = [('l%d_init_h'%l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small) data_train = data['train'] data_val = data['val'] param['eval_data'] = data_val num_time = data_train.data_list[0].shape[1] symbol = sym_gen(num_time) s = Solver(symbol, data_train, sv, **param) print 'Start Training...' s.train() # s.predict() if __name__ == '__main__': PARAMS['num_epoch'] = 30 PARAMS['learning_rate'] = 3 PARAMS['ctx'] = mu.gpu(2) # SOLVE['load'] = False # SOLVE['load_perfix'] = '/home/zijia/HeartDeepLearning/RNN/Result/<9-10:28:52>LSTM[E50]/[ACC-0.34549 E49]' # SOLVE['load_epoch'] = 49 SOLVE['name'] = __file__ train(small=False)
# coding: utf-8 import ipt import mxnet as mx from rnn.rnn_solver import Solver import my_utils as mu import os import pickle as pk import matplotlib.pyplot as plt PARAMS = { 'ctx': mu.gpu(2), 'learning_rate': 1, 'num_epoch': 10, 'initializer': mx.initializer.Xavier(rnd_type='gaussian'), } SOLVE = { 'save_best': True, 'is_rnn': False, } from my_net import net from tools import get_data def cf_train(sv=SOLVE, param=PARAMS): train, val = get_data('c', 2, small=False) sv['name'] = 'CF'
if __name__ == '__main__': batch_size = 1 num_epoch = 25 small_set = True learning_rate = 0.01 num_hidden = 4 num_lstm_layer = 1 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = mu.gpu(1) def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, num_hidden=num_hidden, num_label=1) init_c = [('l%d_init_c'%l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h'%l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small_set) data_train = data['train'] data_val = data['val'] if dummy_data: data_train = DummyIter(data_train) data_val = DummyIter(data_val)
for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small) data_train = data['train'] data_val = data['val'] param['eval_data'] = data_val num_time = data_train.data_list[0].shape[1] symbol = sym_gen(num_time) s = Solver(symbol, data_train, sv, **param) print 'Start Training...' s.train() # s.predict() if __name__ == '__main__': PARAMS['num_epoch'] = 30 PARAMS['learning_rate'] = 3 PARAMS['ctx'] = mu.gpu(2) # SOLVE['load'] = False # SOLVE['load_perfix'] = '/home/zijia/HeartDeepLearning/RNN/Result/<9-10:28:52>LSTM[E50]/[ACC-0.34549 E49]' # SOLVE['load_epoch'] = 49 SOLVE['name'] = __file__ train(small=False)
import ipt import mxnet as mx from rnn import rnn_net as rnn from HeartDeepLearning.solver import Solver import my_utils as mu from rnn_load import get PARAMS={ 'ctx':mu.gpu(2), 'learning_rate':5, 'num_epoch':15, 'initializer':mx.initializer.Xavier(rnd_type='gaussian'), } SOLVE = { 'save_best':True, 'is_rnn' :True, } def train(param = PARAMS, sv=SOLVE, small=False): sv['name'] = 'TEST' input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var
import ipt, logging import mxnet as mx from cnn import cnn_net import my_utils as u from solver import Solver import os PARAMS={ 'ctx':u.gpu(2), 'learning_rate':3, 'num_epoch':15, #'optimizer':'adam', 'initializer':mx.initializer.Xavier(rnd_type='gaussian'), } SOLVE = { 'save_best':True, 'is_rnn' :False, } def train(param = PARAMS, sv=SOLVE, small=False): sv['name'] = 'TEST' input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var
if __name__ == '__main__': batch_size = 2 num_epoch = 25 small_set = False learning_rate = 0.01 num_hidden = 4 num_lstm_layer = 1 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = mu.gpu(2) def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, num_hidden=num_hidden, num_label=1) init_c = [('l%d_init_c'%l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h'%l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small_set) data_train = data['train'] data_val = data['val'] if dummy_data: data_train = DummyIter(data_train) data_val = DummyIter(data_val)
import ipt, logging import mxnet as mx from cnn import cnn_net import my_utils as u from solver import Solver import os from HeartDeepLearning.RNN.rnn_load import load_rnn_pk, files PARAMS={ 'ctx':u.gpu(2), 'learning_rate':3, 'num_epoch':15, #'optimizer':'adam', 'initializer':mx.initializer.Xavier(rnd_type='gaussian'), 'wd':1, } SOLVE = { 'save_best':True, 'is_rnn' :False, } def train(param=PARAMS, sv=SOLVE, small=False): sv['name'] = 'TEST' input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var
if __name__ == '__main__': batch_size = 2 num_epoch = 25 small_set = False learning_rate = 0.01 num_hidden = 4 num_lstm_layer = 1 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = mu.gpu(2) def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, num_hidden=num_hidden, num_label=1) init_c = [('l%d_init_c' % l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small_set) data_train = data['train'] data_val = data['val']
if __name__ == '__main__': batch_size = 1 num_epoch = 25 small_set = True learning_rate = 0.01 num_hidden = 4 num_lstm_layer = 1 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = mu.gpu(1) def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, num_hidden=num_hidden, num_label=1) init_c = [('l%d_init_c' % l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden, 256, 256)) for l in range(num_lstm_layer)] init_states = init_c + init_h data = get(init_states, bs=batch_size, small=small_set) data_train = data['train'] data_val = data['val']