Ejemplo n.º 1
0
def benchmark_train(args):
    cfg = setup(args)
    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if comm.get_world_size() > 1:
        model = DistributedDataParallel(model,
                                        device_ids=[comm.get_local_rank()],
                                        broadcast_buffers=False)
    optimizer = build_optimizer(cfg, model)
    checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
    checkpointer.load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_train_loader(cfg)
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        data = DatasetFromList(dummy_data, copy=False)
        while True:
            yield from data

    max_iter = 400
    trainer = SimpleTrainer(model, f(), optimizer)
    trainer.register_hooks([
        hooks.IterationTimer(),
        hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])
    ])
    trainer.train(1, max_iter)
Ejemplo n.º 2
0
    def __init__(self, size: int):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
        """
        self._size = size
        assert size > 0
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        shard_size = (self._size - 1) // self._world_size + 1
        begin = shard_size * self._rank
        end = min(shard_size * (self._rank + 1), self._size)
        self._local_indices = range(begin, end)
Ejemplo n.º 3
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the mydl logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (CfgNode): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    setup_logger(output_dir, distributed_rank=rank, name="fvcore")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info("Contents of args.config_file={}:\n{}".format(
            args.config_file,
            PathManager.open(args.config_file, "r").read()))

    logger.info("Running with full config:\n{}".format(cfg))
    if comm.is_main_process() and output_dir:
        # Note: some of our scripts may expect the existence of
        # config.yaml in output directory
        path = os.path.join(output_dir, "config.yaml")
        with PathManager.open(path, "w") as f:
            f.write(cfg.dump())
        logger.info("Full config saved to {}".format(os.path.abspath(path)))

    if cfg.VERSION == 2:
        # make sure each worker has a different, yet deterministic seed if specified
        seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)

        # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
        # typical validation set.
        if not (hasattr(args, "eval_only") and args.eval_only):
            torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK
Ejemplo n.º 4
0
def main(args):
    cfg = setup(args)

    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if args.eval_only:
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        return do_test(cfg, model)

    distributed = comm.get_world_size() > 1
    if distributed:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )

    do_train(cfg, model)
    return do_test(cfg, model)
Ejemplo n.º 5
0
    def __init__(self,
                 size: int,
                 shuffle: bool = True,
                 seed: Optional[int] = None):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._size = size
        assert size > 0
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
Ejemplo n.º 6
0
def reduce_loss_dict(loss_dict):
    """
    Reduce the loss dictionary from all processes so that process with rank
    0 has the averaged results. Returns a dict with the same fields as
    loss_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return loss_dict
    with torch.no_grad():
        loss_names = []
        all_losses = []
        for k in sorted(loss_dict.keys()):
            loss_names.append(k)
            all_losses.append(loss_dict[k])
        all_losses = torch.stack(all_losses, dim=0)
        dist.reduce(all_losses, dst=0)
        if dist.get_rank() == 0:
            # only main process gets accumulated, so only divide by
            # world_size in this case
            all_losses /= world_size
        reduced_losses = {k: v for k, v in zip(loss_names, all_losses)}
    return reduced_losses
Ejemplo n.º 7
0
    def __init__(self, dataset_dicts, repeat_thresh, shuffle=True, seed=None):
        """
        Args:
            dataset_dicts (list[dict]): annotations in mydl dataset format.
            repeat_thresh (float): frequency threshold below which data is repeated.
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        # Get fractional repeat factors and split into whole number (_int_part)
        # and fractional (_frac_part) parts.
        rep_factors = self._get_repeat_factors(dataset_dicts, repeat_thresh)
        self._int_part = torch.trunc(rep_factors)
        self._frac_part = rep_factors - self._int_part
Ejemplo n.º 8
0
    def forward(self, input):
        if comm.get_world_size() == 1 or not self.training:
            return super().forward(input)

        assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (mean.detach() -
                                              self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)
        return input * scale + bias
Ejemplo n.º 9
0
    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        logger = logging.getLogger("mydl")
        if not logger.isEnabledFor(
                logging.INFO):  # setup_logger is not called for d2
            setup_logger()
        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        # For training, wrap with DDP. But don't need this for inference.
        if comm.get_world_size() > 1:
            model = DistributedDataParallel(model,
                                            device_ids=[comm.get_local_rank()],
                                            broadcast_buffers=False)
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())
Ejemplo n.º 10
0
def do_train(
    cfg,
    model,
    data_loader,
    data_loader_val,
    optimizer,
    scheduler,
    checkpointer,
    device,
    checkpoint_period,
    test_period,
    arguments,
):
    logger = logging.getLogger("mydl.trainer")
    logger.info("Start training")
    meters = MetricLogger(delimiter="  ")
    max_iter = len(data_loader)
    start_iter = arguments["iteration"]
    model.train()
    start_training_time = time.time()
    end = time.time()

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    dataset_names = cfg.DATASETS.TEST

    for iteration, (images, targets, _) in enumerate(data_loader, start_iter):

        if any(len(target) < 1 for target in targets):
            logger.error(
                f"Iteration={iteration + 1} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}"
            )
            continue
        data_time = time.time() - end
        iteration = iteration + 1
        arguments["iteration"] = iteration

        images = images.to(device)
        targets = [target.to(device) for target in targets]

        loss_dict = model(images, targets)

        losses = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = reduce_loss_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())
        meters.update(loss=losses_reduced, **loss_dict_reduced)

        optimizer.zero_grad()
        # Note: If mixed precision is not used, this ends up doing nothing
        # Otherwise apply loss scaling for mixed-precision recipe
        with amp.scale_loss(losses, optimizer) as scaled_losses:
            scaled_losses.backward()
        optimizer.step()
        scheduler.step()

        batch_time = time.time() - end
        end = time.time()
        meters.update(time=batch_time, data=data_time)

        eta_seconds = meters.time.global_avg * (max_iter - iteration)
        eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))

        if iteration % 20 == 0 or iteration == max_iter:
            logger.info(
                meters.delimiter.join([
                    "eta: {eta}",
                    "iter: {iter}",
                    "{meters}",
                    "lr: {lr:.6f}",
                    "max mem: {memory:.0f}",
                ]).format(
                    eta=eta_string,
                    iter=iteration,
                    meters=str(meters),
                    lr=optimizer.param_groups[0]["lr"],
                    memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
                ))
        if iteration % checkpoint_period == 0:
            checkpointer.save("model_{:07d}".format(iteration), **arguments)
        if data_loader_val is not None and test_period > 0 and iteration % test_period == 0:
            meters_val = MetricLogger(delimiter="  ")
            synchronize()
            _ = inference(  # The result can be used for additional logging, e. g. for TensorBoard
                model,
                # The method changes the segmentation mask format in a data loader,
                # so every time a new data loader is created:
                make_data_loader(cfg,
                                 is_train=False,
                                 is_distributed=(get_world_size() > 1),
                                 is_for_period=True),
                dataset_name="[Validation]",
                iou_types=iou_types,
                box_only=False
                if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
                device=cfg.MODEL.DEVICE,
                expected_results=cfg.TEST.EXPECTED_RESULTS,
                expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
                output_folder=None,
            )
            synchronize()
            model.train()
            with torch.no_grad():
                # Should be one image for each GPU:
                for iteration_val, (images_val, targets_val,
                                    _) in enumerate(tqdm(data_loader_val)):
                    images_val = images_val.to(device)
                    targets_val = [target.to(device) for target in targets_val]
                    loss_dict = model(images_val, targets_val)
                    losses = sum(loss for loss in loss_dict.values())
                    loss_dict_reduced = reduce_loss_dict(loss_dict)
                    losses_reduced = sum(
                        loss for loss in loss_dict_reduced.values())
                    meters_val.update(loss=losses_reduced, **loss_dict_reduced)
            synchronize()
            logger.info(
                meters_val.delimiter.join([
                    "[Validation]: ",
                    "eta: {eta}",
                    "iter: {iter}",
                    "{meters}",
                    "lr: {lr:.6f}",
                    "max mem: {memory:.0f}",
                ]).format(
                    eta=eta_string,
                    iter=iteration,
                    meters=str(meters_val),
                    lr=optimizer.param_groups[0]["lr"],
                    memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
                ))
        if iteration == max_iter:
            checkpointer.save("model_final", **arguments)

    total_training_time = time.time() - start_training_time
    total_time_str = str(datetime.timedelta(seconds=total_training_time))
    logger.info("Total training time: {} ({:.4f} s / it)".format(
        total_time_str, total_training_time / (max_iter)))
Ejemplo n.º 11
0
def make_data_loader(cfg,
                     is_train=True,
                     is_distributed=False,
                     start_iter=0,
                     is_for_period=False):
    num_gpus = get_world_size()
    if is_train:
        images_per_batch = cfg.SOLVER.IMS_PER_BATCH
        assert (
            images_per_batch % num_gpus == 0
        ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of GPUs ({}) used.".format(
            images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = True
        num_iters = cfg.SOLVER.MAX_ITER
    else:
        images_per_batch = cfg.TEST.IMS_PER_BATCH
        assert (
            images_per_batch % num_gpus == 0
        ), "TEST.IMS_PER_BATCH ({}) must be divisible by the number of GPUs ({}) used.".format(
            images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = False if not is_distributed else True
        num_iters = None
        start_iter = 0

    if images_per_gpu > 1:
        logger = logging.getLogger(__name__)
        logger.warning(
            "When using more than one image per GPU you may encounter "
            "an out-of-memory (OOM) error if your GPU does not have "
            "sufficient memory. If this happens, you can reduce "
            "SOLVER.IMS_PER_BATCH (for training) or "
            "TEST.IMS_PER_BATCH (for inference). For training, you must "
            "also adjust the learning rate and schedule length according "
            "to the linear scaling rule. See for example: "
            "https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14"
        )

    # group images which have similar aspect ratio. In this case, we only
    # group in two cases: those with width / height > 1, and the other way around,
    # but the code supports more general grouping strategy
    aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []

    paths_catalog = import_file("mydl.config.paths_catalog", cfg.PATHS_CATALOG,
                                True)
    DatasetCatalog = paths_catalog.DatasetCatalog
    dataset_list = cfg.DATASETS.TRAIN if is_train else cfg.DATASETS.TEST

    # If bbox aug is enabled in testing, simply set transforms to None and we will apply transforms later
    transforms = None if not is_train and cfg.TEST.BBOX_AUG.ENABLED else build_transforms(
        cfg, is_train)
    datasets = build_dataset(dataset_list, transforms, DatasetCatalog, is_train
                             or is_for_period)

    if is_train:
        # save category_id to label name mapping
        save_labels(datasets, cfg.OUTPUT_DIR)

    data_loaders = []
    for dataset in datasets:
        sampler = make_data_sampler(dataset, shuffle, is_distributed)
        batch_sampler = make_batch_data_sampler(dataset, sampler,
                                                aspect_grouping,
                                                images_per_gpu, num_iters,
                                                start_iter)
        collator = BBoxAugCollator() if not is_train and cfg.TEST.BBOX_AUG.ENABLED else \
            BatchCollator(cfg.DATALOADER.SIZE_DIVISIBILITY)
        num_workers = cfg.DATALOADER.NUM_WORKERS
        data_loader = torch.utils.data.DataLoader(
            dataset,
            num_workers=num_workers,
            batch_sampler=batch_sampler,
            collate_fn=collator,
        )
        data_loaders.append(data_loader)
    if is_train or is_for_period:
        # during training, a single (possibly concatenated) data_loader is returned
        assert len(data_loaders) == 1
        return data_loaders[0]
    return data_loaders
Ejemplo n.º 12
0
def build_detection_train_loader(cfg, mapper=None):
    """
    A data loader is created by the following steps:

    1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
    2. Start workers to work on the dicts. Each worker will:

       * Map each metadata dict into another format to be consumed by the model.
       * Batch them by simply putting dicts into a list.

    The batched ``list[mapped_dict]`` is what this dataloader will return.

    Args:
        cfg (CfgNode): the config
        mapper (callable): a callable which takes a sample (dict) from dataset and
            returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, True)`.

    Returns:
        an infinite iterator of training data
    """
    num_workers = get_world_size()
    images_per_batch = cfg.SOLVER.IMS_PER_BATCH
    assert (
        images_per_batch % num_workers == 0
    ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
        images_per_batch, num_workers
    )
    assert (
        images_per_batch >= num_workers
    ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
        images_per_batch, num_workers
    )
    images_per_worker = images_per_batch // num_workers

    # force the training of algorithm without remove image that have not annotations : False
    annotation_filter_emtpy = True

    if cfg.VERSION == 1:
        annotation_filter_emtpy = False 
    else:
        annotation_filter_emtpy = cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS 

    dataset_dicts = get_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        filter_empty=annotation_filter_emtpy,
        min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
        if cfg.VERSION != 1 and cfg.MODEL.KEYPOINT_ON
        else 0,
        proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
    )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    if sampler_name == "TrainingSampler":
        sampler = samplers.TrainingSampler(len(dataset))
    elif sampler_name == "RepeatFactorTrainingSampler":
        sampler = samplers.RepeatFactorTrainingSampler(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
        )
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    if cfg.DATALOADER.ASPECT_RATIO_GROUPING:
        data_loader = torch.utils.data.DataLoader(
            dataset,
            sampler=sampler,
            num_workers=cfg.DATALOADER.NUM_WORKERS,
            batch_sampler=None,
            collate_fn=operator.itemgetter(0),  # don't batch, but yield individual elements
            worker_init_fn=worker_init_reset_seed,
        )  # yield individual mapped dict
        data_loader = AspectRatioGroupedDataset(data_loader, images_per_worker)
    else:
        batch_sampler = torch.utils.data.sampler.BatchSampler(
            sampler, images_per_worker, drop_last=True
        )
        # drop_last so the batch always have the same size
        data_loader = torch.utils.data.DataLoader(
            dataset,
            num_workers=cfg.DATALOADER.NUM_WORKERS,
            batch_sampler=batch_sampler,
            collate_fn=trivial_batch_collator,
            worker_init_fn=worker_init_reset_seed,
        )

    return data_loader
Ejemplo n.º 13
0
def load_cityscapes_instances(image_dir,
                              gt_dir,
                              from_json=True,
                              to_polygons=True):
    """
    Args:
        image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
        gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".
        from_json (bool): whether to read annotations from the raw json file or the png files.
        to_polygons (bool): whether to represent the segmentation as polygons
            (COCO's format) instead of masks (cityscapes's format).

    Returns:
        list[dict]: a list of dicts in mydl standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )
    """
    if from_json:
        assert to_polygons, (
            "Cityscapes's json annotations are in polygon format. "
            "Converting to mask format is not supported now.")
    files = []
    for image_file in glob.glob(os.path.join(image_dir, "**/*.png")):
        suffix = "leftImg8bit.png"
        assert image_file.endswith(suffix)
        prefix = image_dir
        instance_file = gt_dir + image_file[
            len(prefix):-len(suffix)] + "gtFine_instanceIds.png"
        assert os.path.isfile(instance_file), instance_file

        label_file = gt_dir + image_file[
            len(prefix):-len(suffix)] + "gtFine_labelIds.png"
        assert os.path.isfile(label_file), label_file

        json_file = gt_dir + image_file[
            len(prefix):-len(suffix)] + "gtFine_polygons.json"
        files.append((image_file, instance_file, label_file, json_file))
    assert len(files), "No images found in {}".format(image_dir)

    logger = logging.getLogger(__name__)
    logger.info("Preprocessing cityscapes annotations ...")
    # This is still not fast: all workers will execute duplicate works and will
    # take up to 10m on a 8GPU server.
    pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4))

    ret = pool.map(
        functools.partial(cityscapes_files_to_dict,
                          from_json=from_json,
                          to_polygons=to_polygons),
        files,
    )
    logger.info("Loaded {} images from {}".format(len(ret), image_dir))

    # Map cityscape ids to contiguous ids
    from cityscapesscripts.helpers.labels import labels

    labels = [l for l in labels if l.hasInstances and not l.ignoreInEval]
    dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)}
    for dict_per_image in ret:
        for anno in dict_per_image["annotations"]:
            anno["category_id"] = dataset_id_to_contiguous_id[
                anno["category_id"]]
    return ret