def test_build_ratings_matrix():
    collaborative_filtering = CollaborativeFiltering(7)

    Y, users, movies = collaborative_filtering._build_ratings_matrix(
        to_numpy(X_train), to_numpy((y_train)))

    assert_array_equal(Y, Y_expected)
    assert_array_equal(users, users_expected)
    assert_array_equal(movies, movies_expected)
Ejemplo n.º 2
0
def test_gradient():
    x = to_numpy([5, -9, 12])

    numerical_grad = gradient(x, f)

    analytical_grad = grad_f(x)
    assert_allclose(numerical_grad, analytical_grad)
Ejemplo n.º 3
0
    def _check_X_y(self, X, y):
        X = self._check_X(X)
        y = to_numpy(y)

        if y.ndim != 1:
            raise ValueError(
                f"Expected {(X.shape[0],)} shape of ratings, but {y.shape} received"
            )

        return X, y
Ejemplo n.º 4
0
    def _check_X(self, X):
        X = to_numpy(X)

        if X.ndim != 2:
            raise ValueError(
                "User-item pairs (X) should be a two-dimensional array")

        if X.shape[1] != 2:
            raise ValueError(
                f"Expected 2 columns in user-item pairs (X), but {X.shape[1]} received"
            )

        return X
Ejemplo n.º 5
0
def test_fit_predict():
    model = KMeans(3)

    model.fit(X)
    predicted_clusters_labels = model.predict(X)

    X_np = to_numpy(X)
    actual_clusters = [
        X_np[actual_clusters_labels == label].tolist()
        for label in np.unique(actual_clusters_labels)
    ]
    for label in np.unique(predicted_clusters_labels):
        predicted_cluster = X_np[predicted_clusters_labels == label].tolist()
        assert predicted_cluster in actual_clusters
def test_cost_gradient(features_count, regularization_param, Y):
    Y = to_numpy(Y)
    users_count = Y.shape[1]
    items_count = Y.shape[0]
    params = unroll(
        glorot_init(
            ((users_count, features_count), (items_count, features_count))))

    collaborative_filtering = CollaborativeFiltering(features_count,
                                                     regularization_param)
    collaborative_filtering._users_count = users_count
    collaborative_filtering._items_count = items_count

    analytical_gradient = collaborative_filtering._cost_gradient(params, Y)
    numerical_gradient = gradient(params, collaborative_filtering._cost, (Y, ))

    assert_allclose(analytical_gradient,
                    numerical_gradient,
                    rtol=1E-4,
                    atol=1E-4)
Ejemplo n.º 7
0
"""Tests for the KMeans class."""
import pytest
import numpy as np
from mymllib.clustering import KMeans
from mymllib.preprocessing import to_numpy

X = [[5, 0], [4, 1], [6, 2], [0, 6], [1, 5], [2, 7], [6, 6], [7, 5], [4, 7]]
actual_clusters_labels = [0, 0, 0, 1, 1, 1, 2, 2, 2]


@pytest.mark.parametrize("X", [to_numpy(X)])
@pytest.mark.parametrize("clusters_count", [len(X), len(X) + 1])
def test_random_init__not_enough_samples(X, clusters_count):
    model = KMeans(clusters_count)

    with pytest.raises(ValueError):
        model._random_init(X)


@pytest.mark.parametrize("X", [to_numpy(X)])
@pytest.mark.parametrize("clusters_count", [1, 2, 3, len(X) - 1])
def test_random_init(X, clusters_count):
    model = KMeans(clusters_count)

    cluster_centroids = model._random_init(X)

    # Check that correct number of centroids was returned
    assert cluster_centroids.shape[0] == clusters_count

    # Check that all centroids are unique
    assert np.unique(cluster_centroids,
Ejemplo n.º 8
0
def test_minimize(optimizer):
    x0 = to_numpy([-7, 15, 4])
    x = optimizer.minimize(f, grad_f, x0)
    assert_allclose(x, min_f, atol=1E-5)
Ejemplo n.º 9
0
def grad_f(x):
    return to_numpy([4*x[0], 2*x[1], 260*x[2]])
Ejemplo n.º 10
0
"""Tests for optimizers (subclasses of the BaseOptimizer class)."""
import pytest
from numpy.testing import assert_allclose
from mymllib.optimization import GradientDescent, SciPyOptimizer
from mymllib.preprocessing import to_numpy


def f(x):
    return 2*x[0]**2 + 0.5*x[1]**4 + 130*x[2]**2


def grad_f(x):
    return to_numpy([4*x[0], 2*x[1], 260*x[2]])


min_f = to_numpy([0, 0, 0])  # Minimum of f()


@pytest.mark.parametrize("optimizer", [GradientDescent(max_iterations=10000), SciPyOptimizer("L-BFGS-B")])
def test_minimize(optimizer):
    x0 = to_numpy([-7, 15, 4])
    x = optimizer.minimize(f, grad_f, x0)
    assert_allclose(x, min_f, atol=1E-5)
Ejemplo n.º 11
0
def test_to_numpy__one_arg_passed():
    A_numpy = to_numpy(A)

    assert isinstance(A_numpy, ndarray)
Ejemplo n.º 12
0
def test_one_hot(y, expected_labels, expected_y_one_hot):
    labels, y_one_hot = one_hot(to_numpy(y))

    assert_array_equal(labels, expected_labels)
    assert_array_equal(y_one_hot, expected_y_one_hot)
Ejemplo n.º 13
0
def test_to_numpy__two_args_passed():
    A_numpy, B_numpy = to_numpy(A, [1, 2, 3])

    assert isinstance(A_numpy, ndarray)
    assert isinstance(B_numpy, ndarray)