Ejemplo n.º 1
0
    def _test_maths(self, version):
        # Test maths is written (in selected ``version``)

        # Create model
        m1 = cellml.Model('m', version)
        c1 = m1.add_component('c')
        p1 = c1.add_variable('p', 'mole')
        p1.set_initial_value(2)
        q1 = c1.add_variable('q', 'dimensionless')
        r1 = c1.add_variable('r', 'second')
        r1.set_initial_value(0.1)
        t1 = c1.add_variable('t', 'second')
        m1.set_variable_of_integration(t1)

        # Add component without maths
        d1 = m1.add_component('d')
        s1 = d1.add_variable('s', 'volt')
        s1.set_initial_value(1.23)

        # Add two equations
        # Note: Numbers without units become dimensionless in CellML
        eq1 = myokit.Equation(
            myokit.Name(q1),
            myokit.Plus(myokit.Number(3, myokit.units.mole), myokit.Name(p1)))
        er1 = myokit.Equation(myokit.Derivative(myokit.Name(r1)),
                              myokit.Power(myokit.Name(q1), myokit.Number(2)))
        q1.set_equation(eq1)
        r1.set_equation(er1)

        # Write and read
        xml = cellml.write_string(m1)
        m2 = cellml.parse_string(xml)

        # Check results
        p2, q2, r2, s2 = m2['c']['p'], m2['c']['q'], m2['c']['r'], m2['d']['s']
        subst = {
            myokit.Name(p1): myokit.Name(p2),
            myokit.Name(q1): myokit.Name(q2),
            myokit.Name(r1): myokit.Name(r2),
        }
        eq2 = eq1.clone(subst)
        er2 = er1.clone(subst)

        self.assertEqual(q2.equation(), eq2)
        self.assertEqual(r2.equation(), er2)
        self.assertEqual(s2.initial_value(),
                         myokit.Number(1.23, myokit.units.volt))
        self.assertFalse(p2.is_state())
        self.assertFalse(q2.is_state())
        self.assertTrue(r2.is_state())
        self.assertFalse(s2.is_state())
        self.assertIs(m2.variable_of_integration(), m2['c']['t'])
Ejemplo n.º 2
0
    def _derive_sensitivity_equations(self, model, deps, indeps):
        """
        Derive expressions needed to evaluate the variables we want to output
        partial derivatives of.
        """
        # Derive equations needed to calculate the requested sensitivities,
        # assuming that the sensitivities of the state variables are known.
        s_output_equations = []

        # First, get variables instead of LhsExpressions. Ignore Name(state),
        # as we already have these, and convert Derivative(Name(state)) into
        # variables.
        output_variables = [
            lhs.var() for lhs in deps
            if not (isinstance(lhs, myokit.Name) and lhs.var().is_state())
        ]

        # Now call expressions_for, which will return expressions to evaluate
        # the rhs for each variable (i.e. the dot(x) rhs for states).
        output_equations, _ = model.expressions_for(*output_variables)
        del (output_variables, _)

        # Gather output expressions for each parameter or initial value we want
        # sensitivities w.r.t.
        for expr in indeps:
            eqs = []
            for eq in output_equations:
                rhs = eq.rhs.diff(expr, independent_states=False)
                if rhs.is_number(0) and eq.lhs not in deps:
                    continue
                lhs = myokit.PartialDerivative(eq.lhs, expr)
                eqs.append(myokit.Equation(lhs, rhs))
            s_output_equations.append(eqs)

        return s_output_equations
Ejemplo n.º 3
0
    def test_units(self):
        # Test writing of units

        u1 = myokit.parse_unit('kg*m^2/mole^3 (0.123)')

        m1 = cellml.Model('mmm')
        m1.add_units('flibbit', u1)
        m1.add_units('special_volt', myokit.units.Volt)
        d = m1.add_component('ddd')
        q = d.add_variable('q', 'flibbit')
        q.set_equation(myokit.Equation(myokit.Name(q), myokit.Number(2, u1)))

        xml = cellml.write_string(m1)
        m2 = cellml.parse_string(xml)

        q = m2['ddd']['q']
        self.assertEqual(q.units().name(), 'flibbit')
        self.assertEqual(q.units().myokit_unit(), u1)
        self.assertEqual(
            m2.find_units('special_volt').myokit_unit(), myokit.units.volt)

        # Dimensionless units with a multiplier
        u1 = myokit.parse_unit('1 (0.123)')
        m1 = cellml.Model('mmm')
        m1.add_units('flibbit', u1)
        xml = cellml.write_string(m1)
        m2 = cellml.parse_string(xml)
        u2 = m2.find_units('flibbit')
        u2 = u2.myokit_unit()
        self.assertEqual(u1, u2)
    def test_equation(self):
        # Test equation writing

        expression = myokit.Equation(myokit.Name('a'), myokit.Number(1))
        xml = '<apply><eq/><ci>a</ci><cn>1.0</cn></apply>'

        x = self.w.eq(expression)
        m = self._math.match(x)
        self.assertTrue(m)
        self.assertEqual(m.group(1), xml)
Ejemplo n.º 5
0
    def _maths(self, parent, component):
        """
        Adds a ``math`` element to the given ``parent`` containing the maths
        for the variables in ``component``.
        """

        # Test if this component has maths
        has_maths = False
        for v in component:
            if v.rhs() is not None:
                has_maths = True
                break
        if not has_maths:
            return

        # Find free variable alias in local component
        # In valid models, this will always be set if states are present in
        # this component.
        free = None
        for v in component:
            if v.value_source().is_free():
                free = v
                break

        # Create expression writer for this component
        from myokit.formats.cellml import CellMLExpressionWriter
        ewriter = CellMLExpressionWriter(component.model().version())
        ewriter.set_lhs_function(lambda x: x.var().name())
        ewriter.set_unit_function(lambda x: component.find_units_name(x))
        if free is not None:
            ewriter.set_time_variable(free)

        # Reset default namespace to MathML namespace
        nsmap = {None: cellml.NS_MATHML}
        if component.model().version() == '1.0':
            nsmap['cellml'] = cellml.NS_CELLML_1_0
        else:
            nsmap['cellml'] = cellml.NS_CELLML_1_1

        # Create math elements
        math = etree.SubElement(parent, 'math', nsmap=nsmap)

        # Add maths for variables
        for variable in sorted(component, key=_name):
            # Check RHS
            rhs = variable.rhs()
            if rhs is None:
                continue

            # Get LHS
            lhs = myokit.Name(variable)
            if variable.is_state():
                lhs = myokit.Derivative(lhs)

            ewriter.eq(myokit.Equation(lhs, variable.rhs()), math)
Ejemplo n.º 6
0
    def test_model_creation(self):
        # Create a model
        m = myokit.Model('LotkaVolterra')

        # Add the first component
        X = m.add_component('X')
        self.assertEqual(X.qname(), 'X')
        self.assertEqual(X.parent(), m)
        self.assertIsInstance(X, myokit.Component)
        self.assertIn(X.qname(), m)
        self.assertEqual(len(m), 1)

        # Add variable a
        self.assertFalse(X.has_variable('a'))
        a = X.add_variable('a')
        self.assertTrue(X.has_variable('a'))
        self.assertEqual(a, a)
        self.assertIsInstance(a, myokit.Variable)
        self.assertEqual(len(X), 1)
        self.assertIn(a.name(), X)
        a.set_rhs(3)
        self.assertFalse(a.is_state())
        self.assertFalse(a.is_intermediary())
        self.assertTrue(a.is_constant())
        self.assertEqual(a.lhs(), myokit.Name(a))
        self.assertEqual(a.rhs(), myokit.Number(3))
        self.assertEqual(a.rhs().eval(), 3)
        self.assertEqual(a.code(), 'a = 3\n')
        self.assertEqual(a.eq().code(), 'X.a = 3')
        self.assertEqual(a.lhs().code(), 'X.a')
        self.assertEqual(a.rhs().code(), '3')
        self.assertEqual(
            a.eq(), myokit.Equation(myokit.Name(a), myokit.Number(3)))

        # Check lhs
        a_name1 = myokit.Name(a)
        a_name2 = myokit.Name(a)
        self.assertEqual(a_name1, a_name1)
        self.assertEqual(a_name2, a_name2)
        self.assertEqual(a_name1, a_name2)
        self.assertEqual(a_name2, a_name1)

        # Add variable b with two temporary variables
        b = X.add_variable('b')
        self.assertIsInstance(b, myokit.Variable)
        self.assertEqual(len(X), 2)
        self.assertIn(b.name(), X)
        self.assertFalse(b.has_variable('b1'))
        b1 = b.add_variable('b1')
        self.assertTrue(b.has_variable('b1'))
        self.assertEqual(len(b), 1)
        self.assertIn(b1.name(), b)
        self.assertIsInstance(b1, myokit.Variable)
        b2 = b.add_variable('b2')
        self.assertEqual(len(b), 2)
        self.assertIn(b2.name(), b)
        self.assertIsInstance(b2, myokit.Variable)
        b1.set_rhs(1)
        b2.set_rhs(
            myokit.Minus(
                myokit.Minus(myokit.Name(a), myokit.Name(b1)),
                myokit.Number(1))
        )
        b.set_rhs(myokit.Plus(myokit.Name(b1), myokit.Name(b2)))
        self.assertEqual(b.rhs().eval(), 2)
        self.assertFalse(b.is_state())
        self.assertFalse(b.is_intermediary())
        self.assertTrue(b.is_constant())
        self.assertEqual(b.lhs(), myokit.Name(b))

        # Add state variable x
        x = X.add_variable('x')
        x.set_rhs(10)
        x.promote()
        self.assertNotEqual(x, X)
        self.assertIsInstance(x, myokit.Variable)
        self.assertEqual(len(X), 3)
        self.assertIn(x.name(), X)
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))
        self.assertEqual(x.indice(), 0)

        # Test demoting, promoting
        x.demote()
        self.assertFalse(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertTrue(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Name(x))
        x.promote()
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))
        x.demote()
        x.promote()
        x.demote()
        x.promote()
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))

        # Add second component, variables
        Y = m.add_component('Y')
        self.assertNotEqual(X, Y)
        self.assertEqual(len(m), 2)
        c = Y.add_variable('c')
        c.set_rhs(myokit.Minus(myokit.Name(a), myokit.Number(1)))
        d = Y.add_variable('d')
        d.set_rhs(2)
        y = Y.add_variable('y')
        y.promote()

        # Set rhs for x and y
        x.set_rhs(myokit.Minus(
            myokit.Multiply(myokit.Name(a), myokit.Name(x)),
            myokit.Multiply(
                myokit.Multiply(myokit.Name(b), myokit.Name(x)),
                myokit.Name(y)
            )
        ))
        x.set_state_value(10)
        self.assertEqual(x.rhs().code(), 'X.a * X.x - X.b * X.x * Y.y')
        y.set_rhs(myokit.Plus(
            myokit.Multiply(
                myokit.PrefixMinus(myokit.Name(c)), myokit.Name(y)
            ),
            myokit.Multiply(
                myokit.Multiply(myokit.Name(d), myokit.Name(x)),
                myokit.Name(y)
            )
        ))
        y.set_state_value(5)
        self.assertEqual(y.rhs().code(), '-Y.c * Y.y + Y.d * X.x * Y.y')

        # Add ano component, variables
        Z = m.add_component('Z')
        self.assertNotEqual(X, Z)
        self.assertNotEqual(Y, Z)
        self.assertEqual(len(m), 3)
        t = Z.add_variable('total')
        self.assertEqual(t.name(), 'total')
        self.assertEqual(t.qname(), 'Z.total')
        self.assertEqual(t.qname(X), 'Z.total')
        self.assertEqual(t.qname(Z), 'total')
        t.set_rhs(myokit.Plus(myokit.Name(x), myokit.Name(y)))
        self.assertFalse(t.is_state())
        self.assertFalse(t.is_constant())
        self.assertTrue(t.is_intermediary())
        self.assertEqual(t.rhs().code(), 'X.x + Y.y')
        self.assertEqual(t.rhs().code(X), 'x + Y.y')
        self.assertEqual(t.rhs().code(Y), 'X.x + y')
        self.assertEqual(t.rhs().code(Z), 'X.x + Y.y')

        # Add engine component
        E = m.add_component('engine')
        self.assertNotEqual(X, E)
        self.assertNotEqual(Y, E)
        self.assertNotEqual(Z, E)
        self.assertEqual(len(m), 4)
        time = E.add_variable('time')
        time.set_rhs(0)
        self.assertIsNone(time.binding())
        time.set_binding('time')
        self.assertIsNotNone(time.binding())

        # Check state
        state = [i for i in m.states()]
        self.assertEqual(len(state), 2)
        self.assertIn(x, state)
        self.assertIn(y, state)

        # Test variable iterators
        def has(*v):
            for var in v:
                self.assertIn(var, vrs)
            self.assertEqual(len(vrs), len(v))
        vrs = [i for i in m.variables()]
        has(a, b, c, d, x, y, t, time)
        vrs = [i for i in m.variables(deep=True)]
        has(a, b, c, d, x, y, t, b1, b2, time)
        vrs = [i for i in m.variables(const=True)]
        has(a, b, c, d)
        vrs = [i for i in m.variables(const=True, deep=True)]
        has(a, b, c, d, b1, b2)
        vrs = [i for i in m.variables(const=False)]
        has(x, y, t, time)
        vrs = [i for i in m.variables(const=False, deep=True)]
        has(x, y, t, time)
        vrs = [i for i in m.variables(state=True)]
        has(x, y)
        vrs = [i for i in m.variables(state=True, deep=True)]
        has(x, y)
        vrs = [i for i in m.variables(state=False)]
        has(a, b, c, d, t, time)
        vrs = [i for i in m.variables(state=False, deep=True)]
        has(a, b, c, d, t, b1, b2, time)
        vrs = [i for i in m.variables(inter=True)]
        has(t)
        vrs = [i for i in m.variables(inter=True, deep=True)]
        has(t)
        vrs = [i for i in m.variables(inter=False)]
        has(a, b, c, d, x, y, time)
        vrs = [i for i in m.variables(inter=False, deep=True)]
        has(a, b, c, d, x, y, b1, b2, time)
        vrs = list(m.variables(const=True, state=True))
        has()
        vrs = list(m.variables(const=True, state=False))
        has(a, b, c, d)

        # Test sorted variable iteration
        names = [v.name() for v in m.variables(deep=True, sort=True)]
        self.assertEqual(names, [
            'a', 'b', 'b1', 'b2', 'x', 'c', 'd', 'y', 'total', 'time'])

        # Test equation iteration
        # Deeper testing is done when testing the ``variables`` method.
        eq = [eq for eq in X.equations(deep=False)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), X.count_equations(deep=False))
        eq = [eq for eq in X.equations(deep=True)]
        self.assertEqual(len(eq), 5)
        self.assertEqual(len(eq), X.count_equations(deep=True))
        eq = [eq for eq in Y.equations(deep=False)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), Y.count_equations(deep=False))
        eq = [eq for eq in Y.equations(deep=True)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), Y.count_equations(deep=True))
        eq = [eq for eq in Z.equations(deep=False)]
        self.assertEqual(len(eq), 1)
        self.assertEqual(len(eq), Z.count_equations(deep=False))
        eq = [eq for eq in Z.equations(deep=True)]
        self.assertEqual(len(eq), 1)
        self.assertEqual(len(eq), Z.count_equations(deep=True))
        eq = [eq for eq in E.equations(deep=False)]
        self.assertEqual(len(eq), 1)
        eq = [eq for eq in E.equations(deep=True)]
        self.assertEqual(len(eq), 1)
        eq = [eq for eq in m.equations(deep=False)]
        self.assertEqual(len(eq), 8)
        eq = [eq for eq in m.equations(deep=True)]
        self.assertEqual(len(eq), 10)

        # Test dependency mapping
        def has(var, *dps):
            lst = vrs[m.get(var).lhs() if isinstance(var, basestring) else var]
            self.assertEqual(len(lst), len(dps))
            for d in dps:
                d = m.get(d).lhs() if isinstance(d, basestring) else d
                self.assertIn(d, lst)

        vrs = m.map_shallow_dependencies(omit_states=False)
        self.assertEqual(len(vrs), 12)
        has('X.a')
        has('X.b', 'X.b.b1', 'X.b.b2')
        has('X.b.b1')
        has('X.b.b2', 'X.a', 'X.b.b1')
        has('X.x', 'X.a', 'X.b', myokit.Name(x), myokit.Name(y))
        has(myokit.Name(x))
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d', myokit.Name(x), myokit.Name(y))
        has(myokit.Name(y))
        has('Z.total', myokit.Name(x), myokit.Name(y))
        vrs = m.map_shallow_dependencies()
        self.assertEqual(len(vrs), 10)
        has('X.a')
        has('X.b', 'X.b.b1', 'X.b.b2')
        has('X.b.b1')
        has('X.b.b2', 'X.a', 'X.b.b1')
        has('X.x', 'X.a', 'X.b')
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d')
        has('Z.total')
        vrs = m.map_shallow_dependencies(collapse=True)
        self.assertEqual(len(vrs), 8)
        has('X.a')
        has('X.b', 'X.a')
        has('X.x', 'X.a', 'X.b')
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d')
        has('Z.total')

        # Validate
        m.validate()

        # Get solvable order
        order = m.solvable_order()
        self.assertEqual(len(order), 5)
        self.assertIn('*remaining*', order)
        self.assertIn('X', order)
        self.assertIn('Y', order)
        self.assertIn('Z', order)

        # Check that X comes before Y
        pos = dict([(name, k) for k, name in enumerate(order)])
        self.assertLess(pos['X'], pos['Y'])
        self.assertEqual(pos['*remaining*'], 4)

        # Check component equation lists
        eqs = order['*remaining*']
        self.assertEqual(len(eqs), 0)
        eqs = order['Z']
        self.assertEqual(len(eqs), 1)
        self.assertEqual(eqs[0].code(), 'Z.total = X.x + Y.y')
        eqs = order['Y']
        self.assertEqual(len(eqs), 3)
        self.assertEqual(
            eqs[2].code(), 'dot(Y.y) = -Y.c * Y.y + Y.d * X.x * Y.y')
        eqs = order['X']
        self.assertEqual(len(eqs), 5)
        self.assertEqual(eqs[0].code(), 'X.a = 3')
        self.assertEqual(eqs[1].code(), 'b1 = 1')
        self.assertEqual(eqs[2].code(), 'b2 = X.a - b1 - 1')
        self.assertEqual(eqs[3].code(), 'X.b = b1 + b2')

        # Test model export and cloning
        code1 = m.code()
        code2 = m.clone().code()
        self.assertEqual(code1, code2)
Ejemplo n.º 7
0
    def test_reader_writer(self):
        # Test using the proper reader/writer
        try:
            import sympy as sp
        except ImportError:
            print('Sympy not found, skipping test.')
            return

        # Create writer and reader
        w = mypy.SymPyExpressionWriter()
        r = mypy.SymPyExpressionReader(self._model)

        # Name
        a = self._a
        ca = sp.Symbol('c.a')
        self.assertEqual(w.ex(a), ca)
        self.assertEqual(r.ex(ca), a)

        # Number with unit
        b = myokit.Number('12', 'pF')
        cb = sp.Float(12)
        self.assertEqual(w.ex(b), cb)
        # Note: Units are lost in sympy im/ex-port!
        #self.assertEqual(r.ex(cb), b)

        # Number without unit
        b = myokit.Number('12')
        cb = sp.Float(12)
        self.assertEqual(w.ex(b), cb)
        self.assertEqual(r.ex(cb), b)

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), cb)
        # Note: Sympy doesn't seem to have a prefix plus
        self.assertEqual(r.ex(cb), b)

        # Prefix minus
        # Note: SymPy treats -x as Mul(NegativeOne, x)
        # But for numbers just returns a number with a negative value
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), -cb)
        self.assertEqual(float(r.ex(-cb)), float(x))

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), ca + cb)
        # Note: SymPy likes to re-order the operands...
        self.assertEqual(float(r.ex(ca + cb)), float(x))

        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), ca - cb)
        self.assertEqual(float(r.ex(ca - cb)), float(x))

        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), ca * cb)
        self.assertEqual(float(r.ex(ca * cb)), float(x))

        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), ca / cb)
        self.assertEqual(float(r.ex(ca / cb)), float(x))

        # Quotient
        x = myokit.Quotient(a, b)
        self.assertEqual(w.ex(x), ca // cb)
        self.assertEqual(float(r.ex(ca // cb)), float(x))

        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(w.ex(x), ca % cb)
        self.assertEqual(float(r.ex(ca % cb)), float(x))

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), ca**cb)
        self.assertEqual(float(r.ex(ca**cb)), float(x))

        # Sqrt
        x = myokit.Sqrt(a)
        cx = sp.sqrt(ca)
        self.assertEqual(w.ex(x), cx)
        # Note: SymPy converts sqrt to power
        self.assertEqual(float(r.ex(cx)), float(x))

        # Exp
        x = myokit.Exp(a)
        cx = sp.exp(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Log(a)
        x = myokit.Log(a)
        cx = sp.log(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Log(a, b)
        x = myokit.Log(a, b)
        cx = sp.log(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(float(r.ex(cx)), float(x))

        # Log10
        x = myokit.Log10(b)
        cx = sp.log(cb, 10)
        self.assertEqual(w.ex(x), cx)
        self.assertAlmostEqual(float(r.ex(cx)), float(x))

        # Sin
        x = myokit.Sin(a)
        cx = sp.sin(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Cos
        x = myokit.Cos(a)
        cx = sp.cos(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Tan
        x = myokit.Tan(a)
        cx = sp.tan(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ASin
        x = myokit.ASin(a)
        cx = sp.asin(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ACos
        x = myokit.ACos(a)
        cx = sp.acos(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ATan
        x = myokit.ATan(a)
        cx = sp.atan(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Floor
        x = myokit.Floor(a)
        cx = sp.floor(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Ceil
        x = myokit.Ceil(a)
        cx = sp.ceiling(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Abs
        x = myokit.Abs(a)
        cx = sp.Abs(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Equal
        x = myokit.Equal(a, b)
        cx = sp.Eq(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # NotEqual
        x = myokit.NotEqual(a, b)
        cx = sp.Ne(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # More
        x = myokit.More(a, b)
        cx = sp.Gt(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Less
        x = myokit.Less(a, b)
        cx = sp.Lt(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # MoreEqual
        x = myokit.MoreEqual(a, b)
        cx = sp.Ge(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # LessEqual
        x = myokit.LessEqual(a, b)
        cx = sp.Le(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Not
        x = myokit.Not(a)
        cx = sp.Not(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # And
        cond1 = myokit.More(a, b)
        cond2 = myokit.Less(a, b)
        c1 = sp.Gt(ca, cb)
        c2 = sp.Lt(ca, cb)

        x = myokit.And(cond1, cond2)
        cx = sp.And(c1, c2)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Or
        x = myokit.Or(cond1, cond2)
        cx = sp.Or(c1, c2)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # If
        # Note: sympy only does piecewise, not if
        x = myokit.If(cond1, a, b)
        cx = sp.Piecewise((ca, c1), (cb, True))
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x.piecewise())

        # Piecewise
        c = myokit.Number(1)
        cc = sp.Float(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        cx = sp.Piecewise((ca, c1), (cb, c2), (cc, True))
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Myokit piecewise's (like CellML's) always have a final True
        # condition (i.e. an 'else'). SymPy doesn't require this, so test if
        # we can import this --> It will add an "else 0"
        x = myokit.Piecewise(cond1, a, myokit.Number(0))
        cx = sp.Piecewise((ca, c1))
        self.assertEqual(r.ex(cx), x)

        # SymPy function without Myokit equivalent --> Should raise exception
        cu = sp.principal_branch(cx, cc)
        self.assertRaisesRegex(ValueError, 'Unsupported type', r.ex, cu)

        # Derivative
        m = self._model.clone()
        avar = m.get('c.a')
        r = mypy.SymPyExpressionReader(self._model)
        avar.promote(4)
        x = myokit.Derivative(self._a)
        cx = sp.symbols('dot(c.a)')
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Equation
        e = myokit.Equation(a, b)
        ce = sp.Eq(ca, cb)
        self.assertEqual(w.eq(e), ce)
        # There's no backwards equivalent for this!
        # The ereader can handle it, but it becomes and Equals expression.

        # Test sympy division
        del (m, avar, x, cx, e, ce)
        a = self._model.get('c.a')
        b = self._model.get('c').add_variable('bbb')
        b.set_rhs('1 / a')
        e = b.rhs()
        ce = w.ex(b.rhs())
        e = r.ex(ce)
        self.assertEqual(
            e,
            myokit.Multiply(myokit.Number(1),
                            myokit.Power(myokit.Name(a), myokit.Number(-1))))

        # Test sympy negative numbers
        a = self._model.get('c.a')
        e1 = myokit.PrefixMinus(myokit.Name(a))
        ce = w.ex(e1)
        e2 = r.ex(ce)
        self.assertEqual(e1, e2)
Ejemplo n.º 8
0
    def _parse_math(self, element, component):
        """
        Parses a mathml:math ``element``, adding equations to the variables of
        the given ``component``.
        """
        model = component.model()

        # Get variables from component
        def variable_factory(name, element):
            try:
                var = component.variable(name)
            except KeyError:
                raise CellMLParsingError(
                    'Variable references in equations must name a variable'
                    ' from the local component.', element)

            return myokit.Name(var)

        # Create numbers with units
        attr = self._join('units')

        def number_factory(value, element):
            # Numbers not connected to a cn
            if element is None:
                return myokit.Number(value, myokit.units.dimensionless)

            # Get units attribute
            try:
                units = element.attrib[attr]
            except KeyError:
                raise CellMLParsingError(
                    'Numbers inside MathML must define a cellml:units'
                    ' attribute.', element)

            # Find units in component
            try:
                units = model.find_units(units)
            except myokit.formats.cellml.v2.CellMLError:
                raise CellMLParsingError(
                    'Unknown unit "' + str(units) + '" referenced inside a'
                    ' MathML equation.', element)

            # Create and return
            return myokit.Number(value, units.myokit_unit())

        # Create parser
        p = myokit.formats.mathml.MathMLParser(variable_factory,
                                               number_factory, self._vois)

        # Iterate over applies.
        for child in element:

            # Check each child is in MathML namespace
            ns, el = split(child.tag)
            if ns != cellml.NS_MATHML:
                raise CellMLParsingError(
                    'The contents of a mathml:math element must be in the'
                    ' mathml namespace, found "' + str(child.tag) +
                    '" inside ' + str(component) + '.', child)

            # If it isn't these it must be an apply
            if el != 'apply':
                raise CellMLParsingError(
                    'Unexpected contents in mathml:math. Expecting'
                    ' mathml:apply but found mathml:' + el + ' inside maths'
                    ' for ' + str(component) + '.', child)

            # Parse
            eq = p.parse(child)
            if not isinstance(eq, myokit.Equal):
                raise CellMLParsingError(
                    'Unexpected element in MathML, expecting a list of'
                    ' equations, got ' + self._tag(child) + '.', child)
            lhs, rhs = eq

            # Check lhs
            if not isinstance(lhs, myokit.LhsExpression):
                raise CellMLParsingError(
                    'Invalid expression found on the left-hand side of an'
                    ' equation: ' + self._dae_message, child)

            # Check variable is undefined
            var = lhs.var()
            if var.has_equation():
                raise CellMLParsingError(
                    'Overdefined variable: ' + str(var) + ': Two defining'
                    ' equations.', child)

            # Set equations
            try:
                lhs.var().set_equation(myokit.Equation(lhs, rhs))
            except myokit.formats.cellml.v2.CellMLError \
                    as e:  # pragma: no cover (currently can't happen)
                raise CellMLParsingError(str(e), child)