Ejemplo n.º 1
0
u_hat = mysubroutines.add_NoiseAndBluf(f,
                                       kernel,
                                       lambda_weight,
                                       mode=mode,
                                       noise_rate=noise_rate)

h = plt.figure()
ax = h.add_subplot(111)
u1 = u_hat.copy()
if f.shape[2] == 1:
    u1 = u_hat[:, :, 0]

ax.imshow(u1, cmap=plt.cm.gray)
h.savefig('image/fig2_noise.png')

u = mysubroutines.mysolver(u_hat,
                           kernel,
                           lambda_weight,
                           mode=mode,
                           max_step=max_step)
h = plt.figure()
ax = h.add_subplot(111)
u1 = u.copy()
if f.shape[2] == 1:
    u1 = u[:, :, 0]
ax.imshow(u1, cmap=plt.cm.gray)
#ax.imshow(u)
h.savefig('image/fig2_result_lambda' + str(lambda_weight) + '_ite' +
          str(max_step) + '.png')
Ejemplo n.º 2
0
gaussian_sigma = 1.5
noise_rate = 0.1
kernel = mysubroutines.fspecial(kernel_size, gaussian_sigma)

f = mpimg.imread(image_path)

if len(f.shape) < 3:
    f = np.reshape(f, [*f.shape, 1])
if np.max(f) > 1.0:
    f = f / 255

if raw_isnoise == 0:
    u_hat = mysubroutines.add_NoiseAndBluf(f, kernel, noise_rate=noise_rate)
else:
    u_hat = f

u1 = u_hat.copy()
if f.shape[2] == 1:
    u1 = u_hat[:, :, 0]
misc.imsave('image/fig1_noise.png', u1)
plt.close('all')
h1 = plt.figure()
ax1 = h1.add_subplot(121)
ax1.imshow(u1, cmap=plt.cm.gray)

u = mysubroutines.mysolver(u_hat, C=C, K=K, mode_L=mode_L, T=T)
u2 = u.copy()
if f.shape[2] == 1:
    u2 = u2[:, :, 0]
misc.imsave(result_image_path, u2)