Ejemplo n.º 1
0
  def testCalcScoreByThresholdReturnsExpectedScores(self):
    fnWeight = 5.0
    o = Sweeper()
    o.fnWeight = fnWeight

    fakeInput = [
      AnomalyPoint(0, 0.5, -1000, 'probationary'),  # Should never contribute to score (probationary)
      AnomalyPoint(1, 0.5, -1000, 'probationary'),  # Should never contribute to score (probationary)
      AnomalyPoint(2, 0.0, -3, None),  # Should never contribute to score (anomaly == 0.0)
      AnomalyPoint(4, 0.2, 20, 'windowA'),  # Should be used instead of next row when threshold <= 0.2
      AnomalyPoint(5, 0.3, 10, 'windowA'),  # Should be used for winowA _until_ threshold <= 0.2
      AnomalyPoint(6, 0.5, 5, 'windowB'),  # Only score for windowB, but won't be used until threshold <= 0.5
      AnomalyPoint(7, 0.5, -3, None),
    ]

    expectedScoresByThreshold = [
      ThresholdScore(1.1, -2 * fnWeight, 0, 2, 0, 3, 5),  # two windows, both false negatives at this threshold
      ThresholdScore(0.5, 5 - 3 - fnWeight, 1, 1, 1, 2, 5),  # Both 'anomalyScore == 0.5' score, windowA is still FN
      ThresholdScore(0.3, 5 - 3 + 10, 2, 1, 1, 1, 5),  # Both windows now have a TP
      ThresholdScore(0.2, 5 - 3 + 20, 3, 1, 1, 0, 5),  # windowA gets a new max value due to row 4 becoming active
      ThresholdScore(0.0, 5 - 3 + 20 - 3, 3, 0, 2, 0, 5),
    ]

    actual = o.calcScoreByThreshold(fakeInput)

    assert actual == expectedScoresByThreshold
Ejemplo n.º 2
0
  def testPrepareScoreParts(self):
    fakeInput = [
      AnomalyPoint(0, 0.5, 0, 'probationary'),
      AnomalyPoint(1, 0.5, 0, 'probationary'),
      AnomalyPoint(2, 0.0, 0, None),
      AnomalyPoint(4, 0.2, 0, 'windowA'),
      AnomalyPoint(5, 0.2, 0, 'windowA'),
      AnomalyPoint(6, 0.5, 0, 'windowB'),
      AnomalyPoint(7, 0.5, 0, None),
    ]

    fakeFNWeight = 33.0
    o = Sweeper()
    o.fnWeight = fakeFNWeight

    # Expect one entry for all false positives and one entry per unique window name,
    # initialized to a starting score of `-self.fnWeight`
    expectedOutput = {
      "fp": 0,
      "windowA": -fakeFNWeight,
      "windowB": -fakeFNWeight
    }

    actualScoreParts = o._prepareScoreByThresholdParts(fakeInput)
    assert actualScoreParts == expectedOutput
Ejemplo n.º 3
0
    def testPrepareScoreParts(self):
        fakeInput = [
            AnomalyPoint(0, 0.5, 0, 'probationary'),
            AnomalyPoint(1, 0.5, 0, 'probationary'),
            AnomalyPoint(2, 0.0, 0, None),
            AnomalyPoint(4, 0.2, 0, 'windowA'),
            AnomalyPoint(5, 0.2, 0, 'windowA'),
            AnomalyPoint(6, 0.5, 0, 'windowB'),
            AnomalyPoint(7, 0.5, 0, None),
        ]

        fakeFNWeight = 33.0
        o = Sweeper()
        o.fnWeight = fakeFNWeight

        # Expect one entry for all false positives and one entry per unique window name,
        # initialized to a starting score of `-self.fnWeight`
        expectedOutput = {
            "fp": 0,
            "windowA": -fakeFNWeight,
            "windowB": -fakeFNWeight
        }

        actualScoreParts = o._prepareScoreByThresholdParts(fakeInput)
        assert actualScoreParts == expectedOutput
Ejemplo n.º 4
0
    def testCalcScoreByThresholdReturnsExpectedScores(self):
        fnWeight = 5.0
        o = Sweeper()
        o.fnWeight = fnWeight

        fakeInput = [
            AnomalyPoint(0, 0.5, -1000, 'probationary'
                         ),  # Should never contribute to score (probationary)
            AnomalyPoint(1, 0.5, -1000, 'probationary'
                         ),  # Should never contribute to score (probationary)
            AnomalyPoint(
                2, 0.0, -3,
                None),  # Should never contribute to score (anomaly == 0.0)
            AnomalyPoint(
                4, 0.2, 20, 'windowA'
            ),  # Should be used instead of next row when threshold <= 0.2
            AnomalyPoint(
                5, 0.3, 10, 'windowA'
            ),  # Should be used for winowA _until_ threshold <= 0.2
            AnomalyPoint(
                6, 0.5, 5, 'windowB'
            ),  # Only score for windowB, but won't be used until threshold <= 0.5
            AnomalyPoint(7, 0.5, -3, None),
        ]

        expectedScoresByThreshold = [
            ThresholdScore(
                1.1, -2 * fnWeight, 0, 2, 0, 3,
                5),  # two windows, both false negatives at this threshold
            ThresholdScore(
                0.5, 5 - 3 - fnWeight, 1, 1, 1, 2,
                5),  # Both 'anomalyScore == 0.5' score, windowA is still FN
            ThresholdScore(0.3, 5 - 3 + 10, 2, 1, 1, 1,
                           5),  # Both windows now have a TP
            ThresholdScore(
                0.2, 5 - 3 + 20, 3, 1, 1, 0, 5
            ),  # windowA gets a new max value due to row 4 becoming active
            ThresholdScore(0.0, 5 - 3 + 20 - 3, 3, 0, 2, 0, 5),
        ]

        actual = o.calcScoreByThreshold(fakeInput)

        assert actual == expectedScoresByThreshold