def test_scraamp_A_B_join_swap(T_A, T_B, percentages): m = 3 for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scraamp(T_B, m, T_A, percentage, None, False, None) ref_P = ref_mp[:, 0] # ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scraamp( T_B, m, T_A, ignore_trivial=False, percentage=percentage, pre_scraamp=False ) approx.update() comp_P = approx.P_ # comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I)
def test_aamp_stimp_max_m(T): threshold = 0.2 percentage = 0.01 min_m = 3 max_m = 5 n = T.shape[0] - min_m + 1 seed = np.random.randint(100000) np.random.seed(seed) pan = aamp_stimp( T, min_m=min_m, max_m=max_m, step=1, percentage=percentage, pre_scraamp=True, ) for i in range(n): pan.update() ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf) np.random.seed(seed) for idx, m in enumerate(pan.M_[:n]): zone = int(np.ceil(m / 4)) s = zone tmp_P, tmp_I = naive.prescraamp(T, m, T, s=s, exclusion_zone=zone) ref_mp = naive.scraamp(T, m, T, percentage, zone, True, s) for i in range(ref_mp.shape[0]): if tmp_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = tmp_P[i] ref_mp[i, 1] = tmp_I[i] ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0] # Compare raw pan cmp_PAN = pan._PAN naive.replace_inf(ref_PAN) naive.replace_inf(cmp_PAN) npt.assert_almost_equal(ref_PAN, cmp_PAN) # Compare transformed pan cmp_pan = pan.PAN_ ref_pan = naive.transform_pan( pan._PAN, pan._M, threshold, pan._bfs_indices, pan._n_processed, np.min(T), np.max(T), ) naive.replace_inf(ref_pan) naive.replace_inf(cmp_pan) npt.assert_almost_equal(ref_pan, cmp_pan)
def test_scraamp_plus_plus_A_B_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for p in [1.0, 2.0, 3.0]: for s in range(1, zone + 1): for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescraamp(T_A, m, T_B, s=s, p=p) ref_mp = naive.scraamp(T_A, m, T_B, percentage, None, False, None, p=p) for i in range(ref_mp.shape[0]): if ref_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = ref_P[i] ref_mp[i, 1] = ref_I[i] ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scraamp( T_A, m, T_B, ignore_trivial=False, percentage=percentage, pre_scraamp=True, s=s, p=p, ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I)
def test_scraamp_nan_inf_self_join( T_A, T_B, substitute, substitution_locations, percentages ): m = 3 T_B_sub = T_B.copy() for substitution_location in substitution_locations: T_B_sub[:] = T_B[:] T_B_sub[substitution_location] = substitute zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scraamp(T_B_sub, m, T_B_sub, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scraamp(T_B_sub, m, percentage=percentage, pre_scraamp=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I)
def test_scraamp_self_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for p in [1.0, 2.0, 3.0]: for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scraamp(T_B, m, T_B, percentage, zone, False, None, p=p) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scraamp( T_B, m, ignore_trivial=True, percentage=percentage, pre_scraamp=False, p=p, ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I)