Ejemplo n.º 1
0
 def run(x0=None):
     try:
         result = calculate([x0], **run_params)
         #result = {k: [v] for k, v in result.items()}
         fields.save_fields(name, save_params, x=[x0], **result)
     except: # Exception, RuntimeError:
         print "x = %s: Error occured, continuing without saving." %x0
         print traceback.print_exc()
         result = None
     return result
Ejemplo n.º 2
0
def run(params=params):
    X = np.array([0.])
    Y = np.array([0.])
    Z = np.array([params["z0"]])
    J1 = np.array([])
    T = np.array([])
    avgbind=params["avgbind"]
    P_bind=params["P_bind"]
    ffa = True
    i=0
    while i<maxiter and Z[-1]>=-hpore/2.-2.:
        xi_x=gauss(0.,1.)
        xi_y=gauss(0.,1.)
        xi_z=gauss(0.,1.)
        Force = F
	[[Dxfac, Dyfac, Dzfac],[DDx,DDy,DDz]]=D(X[-1],Y[-1],Z[-1])
#        x_new = X[-1] + coeff*xi_x*math.sqrt(abs(Dxfac)) + C*Force[0]*Dxfac + DDx*tau*Dmol
#        y_new = Y[-1] + coeff*xi_y*math.sqrt(abs(Dyfac)) + C*Force[1]*Dyfac + DDy*tau*Dmol
#        z_new = Z[-1] + coeff*xi_z*math.sqrt(abs(Dzfac)) + C*Force[2]*Dzfac + DDz*tau*Dmol
        x_new = X[-1] + coeff*xi_x + C*Force[0]
        y_new = Y[-1] + coeff*xi_y + C*Force[1]
        z_new = Z[-1] + coeff*xi_z + C*Force[2]
        if dis(argument(x_new,y_new,z_new)) < rMolecule:
            x_new = X[-1]
            y_new = Y[-1]
            z_new = Z[-1]
            if ffa and np.random.binomial(1,P_bind)==1 and Z[-1]<=hpore/2.-h2 and Z[-1]>=-hpore/2.+1.:
                add=expovariate(lambd=1./avgbind)
            else:
                add=0.
            ffa = False
        elif dis(argument(x_new,y_new,z_new)) < rMolecule + beps:
            pass
        else:
            ffa = True
            add=tau
        X = np.append(X,x_new)
        Y = np.append(Y,y_new)
        Z = np.append(Z,z_new)
        if abs(Z[-1])>30.:
            print 'Traceback fehler????????????'
        J1=np.append(J1,J(Z[-1]))
        T =np.append(T,add)
        i+=1
        if not (Z[i]<=H/2. and Z[i]>=-H/2 and X[i] <=R/2 and X[i] >=-R/2 and Y[i] <=R/2 and Y[i] >=-R/2):
            break
    if i>=maxiter:
        print 'randomwalk: more than 1e6 steps!'
    X=[list(X)]
    Y=[list(Y)]
    Z=[list(Z)]
    T=[list(T)]
    J1=[list(J1)]
    print 'savefield'
    fields.save_fields("randomwalk7",params,T=T,J=J1)
Ejemplo n.º 3
0
def run(params=params):
    X = np.array([0.])
    Y = np.array([0.])
    Z = np.array([params["z0"]])
    J1 = np.array([])
    T = np.array([])
    avgbind = params["avgbind"]
    P_bind = params["P_bind"]
    i = 0
    while i < maxiter and Z[-1] >= -hpore / 2. - 2.:
        xi_x = gauss(0., 1.)
        xi_y = gauss(0., 1.)
        xi_z = gauss(0., 1.)
        Force = F
        Dfac = f(Z[-1])
        x_new = X[-1] + coeff * xi_x + C * Force[0]
        y_new = Y[-1] + coeff * xi_y + C * Force[1]
        z_new = Z[-1] + coeff * xi_z * math.sqrt(
            Dfac) + C * Force[2] * Dfac + fp(Z[i]) * Dmol * tau
        if dis(argument(x_new, y_new, z_new)) < rMolecule:
            x_new = X[-1]
            y_new = Y[-1]
            z_new = Z[-1]
            if np.random.binomial(
                    1, P_bind
            ) == 1 and Z[-1] <= hpore / 2. - h2 and Z[-1] >= -hpore / 2. + 1.:
                add = expovariate(lambd=1. / avgbind)
            else:
                add = 0.
        else:
            add = tau
        X = np.append(X, x_new)
        Y = np.append(Y, y_new)
        Z = np.append(Z, z_new)
        J1 = np.append(J1, J(Z[-1]))
        T = np.append(T, add)
        i += 1
        if not (Z[i] <= H / 2. and Z[i] >= -H / 2 and X[i] <= R / 2
                and X[i] >= -R / 2 and Y[i] <= R / 2 and Y[i] >= -R / 2):
            break
    if i >= maxiter:
        print 'randomwalk: more than 1e6 steps!'
    X = [list(X)]
    Y = [list(Y)]
    Z = [list(Z)]
    T = [list(T)]
    J1 = [list(J1)]
    fields.save_fields("randomwalk3", params, X=X, Y=Y, Z=Z, T=T, J=J1)
Ejemplo n.º 4
0
    def save(self, name="rw"):
        if "N" in self.params:
            self.params.pop("N")

        optional = dict()
        if self.record_positions:
            optional.update(positions=self.positions,
                            timetraces=self.timetraces)
        if hasattr(self, "binding_zone_forces"):
            optional.update(binding_zone_forces=self.binding_zone_forces)

        fields.save_fields(name,
                           self.params,
                           times=self.times,
                           success=self.success,
                           fail=self.fail,
                           bind_times=self.bind_times,
                           attempts=self.attempts,
                           bindings=self.bindings,
                           attempt_times=self.attempt_times,
                           **optional)
        fields.update()
Ejemplo n.º 5
0
def save_fig_filter(params, fieldsname, i):
    data = f.get_fields(fieldsname, **params)
    T_ = data["T"][i].load()

    J_ = data["J"][i].load()
    T = np.array([])
    J = np.array([])

    for k in range(T_.shape[0]):
        time = T_[k]
        if time == 1.:
            T = np.append(T, 1.)
            J = np.append(J, J_[k])
        else:
            vec = np.ones(int(time))
            T = np.append(T, vec)
            J = np.append(J, J_[k] * vec)

    T = np.append(T, np.ones(1000000))
    J = np.append(J, np.ones(1000000) * J[0])

    for k in range(1, T.shape[0]):
        T[k] += T[k - 1]

#    T*=1e-9
    J *= 1e12

    zero = J[0]
    J -= zero
    from scipy import signal
    b, a = signal.bessel(2, 1. / 5. * 1e-3, analog=False)
    sig_ff = signal.lfilter(b, a, J)
    amp = data["a"][i]
    ftime = np.min(np.where(sig_ff > 1e-10)) - 1
    ampf = abs(np.sum(sig_ff[:ftime])) / float(ftime) / curr * 100
    print 'without filter: %.1f' % amp
    print 'with    filter: %.1f' % ampf
    tau_off = float(ftime)
    figname = fieldsname + '_filter_' + '%.8f' % (
        tau_off * 1e-6) + '_%04d' % i + '_%.1e_%.1e_%.1e_%.1e' % (
            params["avgbind1"], params["avgbind2"], params["P_bind1"],
            params["P_bind2"]) + str(params["z0"])
    af = [ampf]
    tf = [tau_off]
    f.save_fields(fieldsname, params, tf5=tf, af5=af)

    plt.figure(figsize=(6, 4), dpi=80)
    plt.title('Current signal')
    ax = plt.gca()
    if tau_off < 1e3:
        t = np.linspace(0., tau_off, 3)
        fac = 1.
        ax.set_xlabel('time [$ns$]')
    elif tau_off < 1e6 and tau_off >= 1e3:
        t = np.linspace(0., tau_off * 1e-3, 3)
        fac = 1e-3
        ax.set_xlabel(r'time [$\mu s$]')
    else:
        t = np.linspace(0., tau_off * 1e-6, 3)
        fac = 1e-6
        ax.set_xlabel('time [$ms$]')
    T = T * fac
    plt.plot(T, J + zero, color='#000000', label='Original')
    plt.plot(T, sig_ff + zero, linewidth=2., color='#ff6600', label='Filtered')
    plt.legend(loc='best')
    yt = np.linspace(580., 760, 4)
    ax.set_ylabel(r'A [$pA$]')
    ax.set_yticks(yt)
    ax.set_xticks(t)
    xfmt = FormatStrFormatter('%.1f')
    ax.xaxis.set_major_formatter(xfmt)
    ax.set_xlim([-4e-2 * tau_off * fac, (1. + 4e-2) * tau_off * fac])

    plt.tight_layout()
    nano.savefigs(name=figname, DIR='/home/bstadlbau/plots/')
    print 'savefig: %s' % figname
    plt.close("all")
Ejemplo n.º 6
0
def run(params,fieldsname,outcome,outside,b1,b2):
    def area1(x,y,z):
        for seg in b1:
            h=np.array([p[1] for p in seg])
            if np.min(h)<=z and z<=np.max(h):
                return True
        return False
    def area2(x,y,z):
        for seg in b2:
            h=np.array([p[1] for p in seg])
            if np.min(h)<=z and z<=np.max(h):
                return True
        return False
    z0 = params["z0"]
    avgbind1=params["avgbind1"]
    P_bind1=params["P_bind1"]
    avgbind2=params["avgbind2"]
    P_bind2=params["P_bind2"]
    should_restart = True
    while should_restart:
        should_restart = False
        X = np.array([0.])
        Y = np.array([0.])
        Z = np.array([z0])
        J1 = np.array([])
        T = np.array([])
        Nc = 0
        ffa = True
        i=0
        ood = False
        while i<maxiter and Z[-1]>=-hpore/2.-4.:
            add=tau
            xi_x=gauss(0.,1.)
            xi_y=gauss(0.,1.)
            xi_z=gauss(0.,1.)
            arg = argument(X[-1],Y[-1],Z[-1])
            F = Force(X[-1],Y[-1],Z[-1])
            D = [Dx(arg)*1e9,Dy(arg)*1e9,Dz(arg)*1e9]
            dD = [dxDx(arg)*1e9,dyDy(arg)*1e9,dzDz(arg)*1e9]
    #        x_new = X[-1] + coeff*xi_x*math.sqrt(abs(Dxfac)) + C*Force[0]*Dxfac + DDx*tau*Dmol
    #        y_new = Y[-1] + coeff*xi_y*math.sqrt(abs(Dyfac)) + C*Force[1]*Dyfac + DDy*tau*Dmol
    #        z_new = Z[-1] + coeff*xi_z*math.sqrt(abs(Dzfac)) + C*Force[2]*Dzfac + DDz*tau*Dmol
    #        x_new = X[-1] + coeff*xi_x + C*Force[0]
    #        y_new = Y[-1] + coeff*xi_y + C*Force[1]
    #        z_new = Z[-1] + coeff*xi_z + C*Force[2]
            x_new = X[-1] + sqrt(2*D[0]*tau)*xi_x + F[0]*D[0]*1e-9*tau/kT+dD[0]*tau
            y_new = Y[-1] + sqrt(2*D[1]*tau)*xi_y + F[1]*D[1]*1e-9*tau/kT+dD[1]*tau
            z_new = Z[-1] + sqrt(2*D[2]*tau)*xi_z + F[2]*D[2]*1e-9*tau/kT+dD[2]*tau
            if dis(argument(x_new,y_new,z_new)) < rMolecule:
                x_new = X[-1]
                y_new = Y[-1]
                z_new = Z[-1]
                if ffa and area2(0.,0.,Z[-1]): Nc+=1
                if ffa and np.random.binomial(1,P_bind1)==1 and area2(0.,0.,Z[-1]):
                    add+=expovariate(lambd=1./avgbind1)
                elif ffa and np.random.binomial(1,P_bind2)==1 and area1(0.,0.,Z[-1]):
                    add+=expovariate(lambd=1./avgbind2)
                else:
                    add+=0.
                ffa = False
            elif dis(argument(x_new,y_new,z_new)) < rMolecule + beps:
                pass
            else:
                ffa = True
            X = np.append(X,x_new)
            Y = np.append(Y,y_new)
            Z = np.append(Z,z_new)
            if abs(Z[-1])>35. or abs(X[-1])>10. or abs(Y[-1])>10.:
                print 'Out of domain!'
                ood = True
                if not outside or np.unique(J1).shape[0]==1:
                    should_restart = True
                    print 'restart!'
                break
            Jx=Current(X[-1],Y[-1],Z[-1])
            if math.isnan(Jx):
                if add<=tau:
                    Jx = J1[-1]
                else:
                    print 'current at binding position is NaN!!!'
                    print 'current = %.1e A'%Jx
                    print 'X = %.8f'%X[-1]
                    print 'Y = %.8f'%Y[-1]
                    print 'Z = %.8f'%Z[-1]
                    print 'add = %.2f nanoseconds'%add
                    exit()
            J1=np.append(J1,Jx)
            T =np.append(T,add)
            i+=1
    if i>=maxiter:
        print 'randomwalk: more than 1e6 steps!'
    fields.save_fields(fieldsname,params,Nc=[Nc])
    if outcome=='type' or outcome=='both':
        tau_off = np.sum(T)*1e-6
        curr = 7.523849e-10
        amp = (curr-np.inner(T*1e-6,J1)/tau_off)/curr*100.
        if math.isnan(amp):
            np.save('T',T)
            np.save('J1',J1)
            file=open('nanerror.txt','w')
            file.write('tau_off = %.10f\n'% tau_off)
            file.write('amp = %.10f\n'% amp)
            file.close()
            exit()
        t=[tau_off]
        a=[amp]
        if ood:
            ood=[1]
        else:
            ood=[0]
            
        fields.save_fields(fieldsname,params,t=t,a=a,ood=ood)
    if outcome=='traj' or outcome=='both':
        X=[X]
        Y=[Y]
        Z=[Z]
        T=[T]
        J1=[J1]
        fields.save_fields(fieldsname,params,X=X, Y=Y, Z=Z, T=T, J=J1)
Ejemplo n.º 7
0
    stokesLU=True,
)
fields.update()

# TODO calculate in parallel
# TODO calculate current as well
# TODO retrieve x points based on a given model and save file link
#      to data field

X = fields.get_entry("xforce", "X")
N = len(X)
if fields.exists("force3D", **params):
    Xdone = fields.get_field("force3D", "x", **params)
    X = [x0 for x0 in X if x0 not in Xdone]
    print "Existing force file found, %d/%d points remaining." % (len(X), N)
Xfailed = []

for x in X:
    x0 = [x[0], 0., x[1]]
    try:
        F, Fel, Fdrag = Howorka.F_explicit3D([x0], **solver_params)
        fields.save_fields("force3D", params, x=[x], F=F, Fel=Fel, Fdrag=Fdrag)
    except RuntimeError:
        print "RuntimeError occured, continuing without saving."
        Xfailed.append(x)

print "failed:"
print Xfailed
print "%d of %d force calculations failed." % (len(Xfailed), len(X))

fields.update()
Ejemplo n.º 8
0
rMolecule = geop.rMolecule
params=dict(avgbind1=17.2e6,avgbind2=3e4,P_bind1=0.193,P_bind2=3e-1,z0=hpore/2.+0.)
#params=dict(avgbind1=17.2e6,avgbind2=3e4,P_bind1=0.020,P_bind2=3e-1,z0=hpore/2.+0.)
#b1 = [[[l3/2.,-hpore/2.],[l3/2.,hpore/2.-h2],[l2/2.,hpore/2.-h2],[l2/2.,hpore/2.-h1],[l1/2.,hpore/2.-h1],[l1/2.,hpore/2.]]]
#b2 = [[[2.5, hpore/2.-h2-24.], [2.5, hpore/2.-h2-32.]]]
b2 = [[[l3/2.,-hpore/2.],[l3/2.,hpore/2.-h2],[l2/2.,hpore/2.-h2],[l2/2.,hpore/2.-h1],[l1/2.,hpore/2.-h1],[l1/2.,hpore/2.]]]
b1 = []
#b2 = []
outside=True
#outside=False

for i in range(samples):
	run(params,fieldsname,outcome,outside,b1,b2)
	print '%i out of '%i+num 
try: fields.get_fields(fieldsname,**params)["b1"]
except: fields.save_fields(fieldsname,params,b1=b1)
try: fields.get_fields(fieldsname,**params)["b2"]
except: fields.save_fields(fieldsname,params,b2=b2)

print 'field updates'
if outcome=='type' or outcome=='both':
    from create_plot_type import *
    f.update()
    save_fig_type(params,fieldsname)
    plt.close("all")
    from create_plot_traj import *
    save_fig_traj(params,fieldsname,0,False)

if outcome=='traj' or outcome=='both':
    if outcome!='both':
        from create_plot_traj import *
Ejemplo n.º 9
0
Dyy_ = [D[1][1] for D in data["D"]]
Dzz_ = [D[2][2] for D in data["D"]]

Dxx = smooth(smooth(Dxx_, 3), 5)
Dyy = smooth(smooth(Dyy_, 3), 5)
Dzz = smooth(smooth(Dzz_, 3), 5)


def matrix(d):
    return [[d[0], 0., 0.], [0., d[1], 0.], [0., 0., d[2]]]


data = dict(x=x, D=map(matrix, zip(Dxx, Dyy, Dzz)))
if not fields.exists("pugh_diff_pore", rMolecule=rMolecule):
    print "SAVING..."
    fields.save_fields("pugh_diff_pore", dict(rMolecule=rMolecule), **data)
    fields.update()

plt.figure()
plt.plot(x, Dxx_, "o:b")
plt.plot(x, Dxx, "-b", label=r"$D_x$")
plt.plot(x, Dyy_, "o:r")
plt.plot(x, Dyy, "-r", label=r"$D_y$")
plt.plot(x, Dzz_, "o:g")
plt.plot(x, Dzz, "-g", label=r"$D_z$")

plt.xlabel('x distance from pore wall [nm]')
plt.ylabel('diffusivity relative to bulk')
plt.legend(loc='lower right')
plt.tight_layout()
Ejemplo n.º 10
0
def run(params,fieldsname):
    z0 = params["z0"]
    X = np.array([0.])
    Y = np.array([0.])
    Z = np.array([z0])
    J1 = np.array([])
    T = np.array([])
    bind1 = 0
    bind2 = 0
    avgbind1=params["avgbind1"]
    P_bind1=params["P_bind1"]
    avgbind2=params["avgbind2"]
    P_bind2=params["P_bind2"]
    ffa = True
    i=0
    ood = False
    while i<maxiter and Z[-1]>=-hpore/2.-2.:
        if ood:
	    bind1 = 0
	    bind2 = 0
            i=0
            ood = False
            ffa = True
            X = np.array([0.])
            Y = np.array([0.])
            Z = np.array([z0])
            T = np.array([])
            J1 = np.array([])
        add=tau
        xi_x=gauss(0.,1.)
        xi_y=gauss(0.,1.)
        xi_z=gauss(0.,1.)
        arg = argument(X[-1],Y[-1],Z[-1])
        F = Force(X[-1],Y[-1],Z[-1])
        D = [Dx(arg)*1e9,Dy(arg)*1e9,Dz(arg)*1e9]
        dD = [dxDx(arg)*1e9,dyDy(arg)*1e9,dzDz(arg)*1e9]
#        x_new = X[-1] + coeff*xi_x*math.sqrt(abs(Dxfac)) + C*Force[0]*Dxfac + DDx*tau*Dmol
#        y_new = Y[-1] + coeff*xi_y*math.sqrt(abs(Dyfac)) + C*Force[1]*Dyfac + DDy*tau*Dmol
#        z_new = Z[-1] + coeff*xi_z*math.sqrt(abs(Dzfac)) + C*Force[2]*Dzfac + DDz*tau*Dmol
#        x_new = X[-1] + coeff*xi_x + C*Force[0]
#        y_new = Y[-1] + coeff*xi_y + C*Force[1]
#        z_new = Z[-1] + coeff*xi_z + C*Force[2]
        x_new = X[-1] + sqrt(2*D[0]*tau)*xi_x + F[0]*D[0]*1e-9*tau/kT+dD[0]*tau
        y_new = Y[-1] + sqrt(2*D[1]*tau)*xi_y + F[1]*D[1]*1e-9*tau/kT+dD[1]*tau
        z_new = Z[-1] + sqrt(2*D[2]*tau)*xi_z + F[2]*D[2]*1e-9*tau/kT+dD[2]*tau
        if dis(argument(x_new,y_new,z_new)) < rMolecule:
            x_new = X[-1]
            y_new = Y[-1]
            z_new = Z[-1]
            if ffa and np.random.binomial(1,P_bind1)==1 and Z[-1]<=hpore/2.-h2-5 and Z[-1]>=-hpore/2.+h4:
                add+=expovariate(lambd=1./avgbind1)
#                print add
                bind1+=1
            elif ffa and np.random.binomial(1,P_bind2)==1 and ((Z[-1]<=-hpore/2.+h4 and Z[-1]>=-hpore/2.+0.) or (Z[-1]<=hpore/2.-h2 and Z[-1]>=hpore/2.-h2-5.)):
                add+=expovariate(lambd=1./avgbind2)
                bind2+=1
            else:
                add+=0.
            ffa = False
        elif dis(argument(x_new,y_new,z_new)) < rMolecule + beps:
            pass
        else:
            ffa = True
        X = np.append(X,x_new)
        Y = np.append(Y,y_new)
        Z = np.append(Z,z_new)
        if abs(Z[-1])>35. or abs(X[-1])>10. or abs(Y[-1])>10.:
            print 'Out of domain!'
            ood = True
            X[-1]=0.
            Y[-1]=0.
            Z[-1]=0.
        Jx=Current(X[-1],Y[-1],Z[-1])
        if math.isnan(Jx):
            if add<=tau:
                Jx = J1[-1]
            else:
                print 'current at binding position is NaN!!!'
                print 'current = %.1e A'%Jx
                print 'X = %.8f'%X[-1]
                print 'Y = %.8f'%Y[-1]
                print 'Z = %.8f'%Z[-1]
                print 'add = %.2f nanoseconds'%add
                exit()
        J1=np.append(J1,Jx)
        T =np.append(T,add)
        i+=1
        if not (Z[i]<=H/2. and Z[i]>=-H/2 and X[i] <=R/2 and X[i] >=-R/2 and Y[i] <=R/2 and Y[i] >=-R/2):
            break
    if i>=maxiter:
        print 'randomwalk: more than 1e6 steps!'
#    tau_off = np.sum(T)*1e-6
#    curr = 7.523849e-10
#    amp = (curr-np.inner(T*1e-6,J1)/tau_off)/curr*100.
#    if tau_off<1.:
#        t1 = [tau_off]
#        a1 = [amp]
#        t2 = []
#        a2 = []
#    else:
#        t2 = [tau_off]
#        a2 = [amp]
#        t1 = []
#        a1 = []
    X=[list(X)]
    Y=[list(Y)]
    Z=[list(Z)]
    T=[list(T)]
    J1=[list(J1)]
    fields.save_fields(fieldsname,params,X=X, Y=Y, Z=Z, T=T, J=J1)
Ejemplo n.º 11
0
new = ['events3_onlyone_%i_new' % i for i in [1, 2, 3, 4, 5]]

hpore = 46.
params = dict(avgbind1=2e7,
              avgbind2=3e4,
              P_bind1=8.e-2,
              P_bind2=0 * 3e-1,
              z0=hpore / 2. + 0.)
for i in range(5):
    print i
    data = fields.get_fields(old[i], **params)
    for k in range(len(data["X"])):
        if k % 10 == 0:
            print k
        saveX = [np.array(data["X"][k])]
        saveY = [np.array(data["Y"][k])]
        saveZ = [np.array(data["Z"][k])]
        fields.save_fields(new[i], params, X=saveX, Y=saveY, Z=saveZ)
    fields.save_fields(new[i],
                       params,
                       a=data["a"],
                       ood=data["ood"],
                       J=data["J"],
                       t=data["t"],
                       b1=data["b1"],
                       Fzavg=data["Fzavg"],
                       b2=data["b2"],
                       Dzavg=data["Dzavg"],
                       T=data["T"])
    fields.update()