Ejemplo n.º 1
0
    def _set_time_coverage_metadata(self, gdal_metadata):
        ### GET START TIME from METADATA
        time_coverage_start = None
        if 'time_coverage_start' in gdal_metadata:
            time_coverage_start = parse_time(
                gdal_metadata['time_coverage_start'])

        ### GET END TIME from METADATA
        time_coverage_end = None
        if 'time_coverage_end' in gdal_metadata:
            time_coverage_end = parse_time(gdal_metadata['time_coverage_end'])

        # set time_coverage_start if available
        if time_coverage_start is not None:
            self.dataset.SetMetadataItem('time_coverage_start',
                                         time_coverage_start.isoformat())
        # set time_coverage_end if available
        if time_coverage_end is not None:
            self.dataset.SetMetadataItem('time_coverage_end',
                                         time_coverage_end.isoformat())
Ejemplo n.º 2
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 resolution='low',
                 **kwargs):
        ''' Create LANDSAT VRT from multiple tif files or single tar.gz file'''
        mtlFileName = ''
        bandFileNames = []
        bandSizes = []
        bandDatasets = []
        fname = os.path.split(filename)[1]

        if (filename.endswith('.tar') or filename.endswith('.tar.gz')
                or filename.endswith('.tgz')):
            # try to open .tar or .tar.gz or .tgz file with tar
            try:
                tarFile = tarfile.open(filename)
            except:
                raise WrongMapperError

            # collect names of bands and corresponding sizes
            # into bandsInfo dict and bandSizes list
            tarNames = sorted(tarFile.getnames())
            for tarName in tarNames:
                # check if TIF files inside TAR qualify
                if (tarName[0] in ['L', 'M']
                        and os.path.splitext(tarName)[1] in ['.TIF', '.tif']):
                    # open TIF file from TAR using VSI
                    sourceFilename = '/vsitar/%s/%s' % (filename, tarName)
                    gdalDatasetTmp = gdal.Open(sourceFilename)
                    # keep name, GDALDataset and size
                    bandFileNames.append(sourceFilename)
                    bandSizes.append(gdalDatasetTmp.RasterXSize)
                    bandDatasets.append(gdalDatasetTmp)
                elif (tarName.endswith('MTL.txt')
                      or tarName.endswith('MTL.TXT')):
                    # get mtl file
                    mtlFileName = tarName

        elif ((fname.startswith('L') or fname.startswith('M'))
              and (fname.endswith('.tif') or fname.endswith('.TIF')
                   or fname.endswith('._MTL.txt'))):

            # try to find TIF/tif files with the same name as input file
            path, coreName = os.path.split(filename)
            coreName = os.path.splitext(coreName)[0].split('_')[0]
            coreNameMask = coreName + '*[tT][iI][fF]'
            tifNames = sorted(glob.glob(os.path.join(path, coreNameMask)))
            for tifName in tifNames:
                sourceFilename = tifName
                gdalDatasetTmp = gdal.Open(sourceFilename)
                # keep name, GDALDataset and size
                bandFileNames.append(sourceFilename)
                bandSizes.append(gdalDatasetTmp.RasterXSize)
                bandDatasets.append(gdalDatasetTmp)

            # get mtl file
            mtlFiles = glob.glob(coreName + '*[mM][tT][lL].[tT][xX][tT]')
            if len(mtlFiles) > 0:
                mtlFileName = mtlFiles[0]
        else:
            raise WrongMapperError

        # if not TIF files found - not appropriate mapper
        if not bandFileNames:
            raise WrongMapperError

        # get appropriate band size based on number of unique size and
        # required resoltuion
        if resolution == 'low':
            bandXSise = min(bandSizes)
        elif resolution in ['high', 'hi']:
            bandXSise = max(bandSizes)
        else:
            raise ValueError('Wrong resolution %s for file %s' %
                             (resolution, filename))

        # find bands with appropriate size and put to metaDict
        metaDict = []
        for bandFileName, bandSize, bandDataset in zip(bandFileNames,
                                                       bandSizes,
                                                       bandDatasets):
            if bandSize == bandXSise:
                # let last part of file name be suffix
                bandSuffix = os.path.splitext(bandFileName)[0].split('_')[-1]

                metaDict.append({
                    'src': {
                        'SourceFilename': bandFileName,
                        'SourceBand': 1,
                        'ScaleRatio': 0.1
                    },
                    'dst': {
                        'wkv': 'toa_outgoing_spectral_radiance',
                        'suffix': bandSuffix
                    }
                })
                gdalDataset4Use = bandDataset

        # create empty VRT dataset with geolocation only
        self._init_from_gdal_dataset(gdalDataset4Use)

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        if len(mtlFileName) > 0:
            mtlFileName = os.path.join(
                os.path.split(bandFileNames[0])[0], mtlFileName)
            mtlFileLines = [
                line.strip() for line in self.read_vsi(mtlFileName).split('\n')
            ]
            dateString = [
                line.split('=')[1].strip() for line in mtlFileLines
                if ('DATE_ACQUIRED' in line or 'ACQUISITION_DATE' in line)
            ][0]
            timeStr = [
                line.split('=')[1].strip() for line in mtlFileLines
                if ('SCENE_CENTER_TIME' in line
                    or 'SCENE_CENTER_SCAN_TIME' in line)
            ][0]
            time_start = parse_time(dateString + 'T' + timeStr).isoformat()
            time_end = (parse_time(dateString + 'T' + timeStr) +
                        datetime.timedelta(microseconds=60000000)).isoformat()

        self.dataset.SetMetadataItem('time_coverage_start', time_start)
        self.dataset.SetMetadataItem('time_coverage_end', time_end)

        # set platform
        platform = 'LANDSAT'
        if fname[2].isdigit():
            platform += '-' + fname[2]
        ee = pti.get_gcmd_platform(platform)
        self.dataset.SetMetadataItem('platform', json.dumps(ee))

        # set instrument
        instrument = {
            'LANDSAT': 'MSS',
            'LANDSAT-1': 'MSS',
            'LANDSAT-2': 'MSS',
            'LANDSAT-3': 'MSS',
            'LANDSAT-4': 'TM',
            'LANDSAT-5': 'TM',
            'LANDSAT-7': 'ETM+',
            'LANDSAT-8': 'OLI'
        }[platform]
        ee = pti.get_gcmd_instrument(instrument)
        self.dataset.SetMetadataItem('instrument', json.dumps(ee))
Ejemplo n.º 3
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_STEP=20,
                 MAX_LAT=90,
                 MIN_LAT=50,
                 resolution='low',
                 **kwargs):
        ''' Create VRT
        Parameters
        ----------
        GCP_COUNT : int
            number of GCPs along each dimention
        '''
        ifile = os.path.split(filename)[1]
        if not ifile.startswith('GW1AM2_') or not ifile.endswith('.h5'):
            raise WrongMapperError
        try:
            ProductName = gdalMetadata['ProductName']
            PlatformShortName = gdalMetadata['PlatformShortName']
            SensorShortName = gdalMetadata['SensorShortName']
        except:
            raise WrongMapperError

        if (not ProductName == 'AMSR2-L1R'
                or not PlatformShortName == 'GCOM-W1'
                or not SensorShortName == 'AMSR2'):
            raise WrongMapperError

        if resolution == 'low':
            subDatasetWidth = 243
        else:
            subDatasetWidth = 486

        # get GCPs from lon/lat grids
        latGrid = gdal.Open(
            'HDF5:"%s"://Latitude_of_Observation_Point_for_89A' %
            filename).ReadAsArray()
        lonGrid = gdal.Open(
            'HDF5:"%s"://Longitude_of_Observation_Point_for_89A' %
            filename).ReadAsArray()
        if subDatasetWidth == 243:
            latGrid = latGrid[:, ::2]
            lonGrid = lonGrid[:, ::2]

        dx = .5
        dy = .5
        gcps = []
        k = 0
        maxY = 0
        minY = latGrid.shape[0]
        for i0 in range(0, latGrid.shape[0], GCP_STEP):
            for i1 in range(0, latGrid.shape[1], GCP_STEP):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(lonGrid[i0, i1])
                lat = float(latGrid[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= MIN_LAT
                        and lat <= MAX_LAT):
                    gcp = gdal.GCP(lon, lat, 0, i1 + dx, i0 + dy)
                    gcps.append(gcp)
                    k += 1
                    maxY = max(maxY, i0)
                    minY = min(minY, i0)
        yOff = minY
        ySize = maxY - minY

        # remove Y-offset from gcps
        for gcp in gcps:
            gcp.GCPLine -= yOff

        metaDict = []

        subDatasets = gdalDataset.GetSubDatasets()
        metadata = gdalDataset.GetMetadata()
        for subDataset in subDatasets:
            # select subdatasets fro that resolution (width)
            if (subDatasetWidth == int(
                    subDataset[1].split(']')[0].split('x')[-1])
                    and 'Latitude' not in subDataset[0]
                    and 'Longitude' not in subDataset[0]):
                name = subDataset[0].split('/')[-1]
                # find scale
                scale = 1
                for meta in metadata:
                    if name + '_SCALE' in meta:
                        scale = float(metadata[meta])
                # create meta entry
                metaEntry = {
                    'src': {
                        'SourceFilename': subDataset[0],
                        'sourceBand': 1,
                        'ScaleRatio': scale,
                        'ScaleOffset': 0,
                        'yOff': yOff,
                        'ySize': ySize,
                    },
                    'dst': {
                        'name': name
                    }
                }
                metaDict.append(metaEntry)

        # create VRT from one of the subdatasets
        gdalSubDataset = gdal.Open(metaEntry['src']['SourceFilename'])
        self._init_from_dataset_params(subDatasetWidth, ySize,
                                       (1, 0, 0, ySize, 0, -1),
                                       NSR().wkt)
        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse_time(gdalMetadata['ObservationStartDateTime']).isoformat())
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            parse_time(gdalMetadata['ObservationEndDateTime']).isoformat())
        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)
        self.reproject_gcps(
            '+proj=stere +datum=WGS84 +ellps=WGS84 +lat_0=90 +lon_0=0 +no_defs'
        )
        self.tps = True

        mm = pti.get_gcmd_instrument('AMSR2')
        ee = pti.get_gcmd_platform('GCOM-W1')
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))
Ejemplo n.º 4
0
    def __init__(self, filename, gdalDataset, gdalMetadata, **kwargs):
        ''' Create CSKS VRT '''

        if filename.split('/')[-1][0:4] != "CSKS":
            raise WrongMapperError

        # Get coordinates
        metadata = gdalMetadata['Estimated_Bottom_Left_Geodetic_Coordinates']
        bottom_left_lon = float(metadata.split(' ')[1])
        bottom_left_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Bottom_Right_Geodetic_Coordinates']
        bottom_right_lon = float(metadata.split(' ')[1])
        bottom_right_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Top_Left_Geodetic_Coordinates']
        top_left_lon = float(metadata.split(' ')[1])
        top_left_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Top_Right_Geodetic_Coordinates']
        top_right_lon = float(metadata.split(' ')[1])
        top_right_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Scene_Centre_Geodetic_Coordinates']
        center_lon = float(metadata.split(' ')[1])
        center_lat = float(metadata.split(' ')[0])

        # Get sub-datasets
        subDatasets = gdalDataset.GetSubDatasets()

        # Get file names from dataset or subdataset
        if subDatasets.__len__() == 1:
            filenames = [filename]
        else:
            filenames = [f[0] for f in subDatasets]

        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'QLK':
                filenames.pop(i)
        #print filenames

        subDataset = gdal.Open(filenames[0])

        # generate list of GCPs
        gcps = []
        # create GCP with X,Y,Z(?),pixel,line from lat/lon matrices
        gcp = gdal.GCP(float(bottom_left_lon), float(bottom_left_lat), 0, 0, 0)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 0, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(bottom_right_lon), float(bottom_right_lat), 0,
                       subDataset.RasterXSize, 0)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 1, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(top_left_lon), float(top_left_lat), 0, 0,
                       subDataset.RasterYSize)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 2, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(top_right_lon), float(top_right_lat), 0,
                       subDataset.RasterXSize, subDataset.RasterYSize)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 3, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(center_lon), float(center_lat), 0,
                       int(np.round(subDataset.RasterXSize / 2.)),
                       int(round(subDataset.RasterYSize / 2.)))
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 4, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)

        # append GCPs and lat/lon projection to the vsiDataset
        latlongSRS = osr.SpatialReference()
        latlongSRS.ImportFromProj4(
            "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
        latlongSRSWKT = latlongSRS.ExportToWkt()

        # create empty VRT dataset with geolocation only
        # x_size, y_size, geo_transform, projection, gcps=None, gcp_projection='', **kwargs
        self._init_from_dataset_params(
            subDataset.RasterXSize, subDataset.RasterYSize,
            (0, 1, 0, subDataset.RasterYSize, 0, -1), latlongSRSWKT, gcps,
            latlongSRSWKT)

        #print self.filename
        # Read all bands later
        #band='S01'
        #res='SBI'

        # Use only full size "original" datasets
        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'SBI':
                # Add real and imaginary raw counts as bands
                src = {
                    'SourceFilename': filenames[i],
                    'SourceBand': 1,
                    'DataType': gdal.GDT_Int16
                }
                dst = {
                    'dataType':
                    gdal.GDT_Float32,
                    'name':
                    'RawCounts_%s_real' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation']
                }
                self.create_band(src, dst)

                src = {
                    'SourceFilename': filenames[i],
                    'SourceBand': 2,
                    'DataType': gdal.GDT_Int16
                }
                dst = {
                    'dataType':
                    gdal.GDT_Float32,
                    'name':
                    'RawCounts_%s_imaginary' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation']
                }
                self.create_band(src, dst)

                self.dataset.FlushCache()

        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'SBI':
                # Calculate sigma0 scaling factor
                Rref = float(gdalMetadata['Reference_Slant_Range'])
                Rexp = float(gdalMetadata['Reference_Slant_Range_Exponent'])
                alphaRef = float(gdalMetadata['Reference_Incidence_Angle'])
                F = float(gdalMetadata['Rescaling_Factor'])
                K = float(gdalMetadata[filenames[i][-7:-4] +
                                       '_Calibration_Constant'])
                Ftot = Rref**(2. * Rexp)
                Ftot *= np.sin(alphaRef * np.pi / 180.0)
                Ftot /= F**2.
                Ftot /= K

                #print Ftot

                src = [{
                    'SourceFilename': self.filename,
                    'DataType': gdal.GDT_Float32,
                    'SourceBand': 2 * i + 1,
                    'ScaleRatio': np.sqrt(Ftot)
                }, {
                    'SourceFilename': self.filename,
                    'DataType': gdal.GDT_Float32,
                    'SourceBand': 2 * i + 2,
                    'ScaleRatio': np.sqrt(Ftot)
                }]
                dst = {
                    'wkv':
                    'surface_backwards_scattering_coefficient_of_radar_wave',
                    'PixelFunctionType':
                    'RawcountsToSigma0_CosmoSkymed_SBI',
                    'polarisation':
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation'],
                    'name':
                    'sigma0_%s' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation'],
                    'SatelliteID':
                    gdalMetadata['Satellite_ID'],
                    'dataType':
                    gdal.GDT_Float32
                }
                #'pass': gdalMetadata['']
                #         - I can't find this in the metadata...

                self.create_band(src, dst)

                self.dataset.FlushCache()

        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse_time(gdalMetadata['Scene_Sensing_Start_UTC']).isoformat())
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            parse_time(gdalMetadata['Scene_Sensing_Stop_UTC']).isoformat())
Ejemplo n.º 5
0
    def __init__(self,
                 inputFileName,
                 gdalDataset,
                 gdalMetadata,
                 logLevel=30,
                 rmMetadatas=[
                     'NETCDF_VARNAME', '_Unsigned', 'ScaleRatio',
                     'ScaleOffset', 'dods_variable'
                 ],
                 **kwargs):
        # Remove 'NC_GLOBAL#' and 'GDAL_' and 'NANSAT_'
        # from keys in gdalDataset
        tmpGdalMetadata = {}
        geoMetadata = {}
        origin_is_nansat = False
        if not gdalMetadata:
            raise WrongMapperError
        for key in gdalMetadata.keys():
            newKey = key.replace('NC_GLOBAL#', '').replace('GDAL_', '')
            if 'NANSAT_' in newKey:
                geoMetadata[newKey.replace('NANSAT_', '')] = gdalMetadata[key]
                origin_is_nansat = True
            else:
                tmpGdalMetadata[newKey] = gdalMetadata[key]
        gdalMetadata = tmpGdalMetadata
        fileExt = os.path.splitext(inputFileName)[1]

        # Get file names from dataset or subdataset
        subDatasets = gdalDataset.GetSubDatasets()
        if len(subDatasets) == 0:
            filenames = [inputFileName]
        else:
            filenames = [f[0] for f in subDatasets]

        # add bands with metadata and corresponding values to the empty VRT
        metaDict = []
        xDatasetSource = ''
        yDatasetSource = ''
        firstXSize = 0
        firstYSize = 0
        for _, filename in enumerate(filenames):
            subDataset = gdal.Open(filename)
            # choose the first dataset whith grid
            if (firstXSize == 0 and firstYSize == 0
                    and subDataset.RasterXSize > 1
                    and subDataset.RasterYSize > 1):
                firstXSize = subDataset.RasterXSize
                firstYSize = subDataset.RasterYSize
                firstSubDataset = subDataset
                # get projection from the first subDataset
                projection = firstSubDataset.GetProjection()

            # take bands whose sizes are same as the first band.
            if (subDataset.RasterXSize == firstXSize
                    and subDataset.RasterYSize == firstYSize):
                if projection == '':
                    projection = subDataset.GetProjection()
                if ('GEOLOCATION_X_DATASET' in filename
                        or 'longitude' in filename):
                    xDatasetSource = filename
                elif ('GEOLOCATION_Y_DATASET' in filename
                      or 'latitude' in filename):
                    yDatasetSource = filename
                else:
                    for iBand in range(subDataset.RasterCount):
                        subBand = subDataset.GetRasterBand(iBand + 1)
                        bandMetadata = subBand.GetMetadata_Dict()
                        if 'PixelFunctionType' in bandMetadata:
                            bandMetadata.pop('PixelFunctionType')
                        sourceBands = iBand + 1
                        # sourceBands = i*subDataset.RasterCount + iBand + 1

                        # generate src metadata
                        src = {
                            'SourceFilename': filename,
                            'SourceBand': sourceBands
                        }
                        # set scale ratio and scale offset
                        scaleRatio = bandMetadata.get(
                            'ScaleRatio',
                            bandMetadata.get(
                                'scale', bandMetadata.get('scale_factor', '')))
                        if len(scaleRatio) > 0:
                            src['ScaleRatio'] = scaleRatio
                        scaleOffset = bandMetadata.get(
                            'ScaleOffset',
                            bandMetadata.get(
                                'offset', bandMetadata.get('add_offset', '')))
                        if len(scaleOffset) > 0:
                            src['ScaleOffset'] = scaleOffset
                        # sate DataType
                        src['DataType'] = subBand.DataType

                        # generate dst metadata
                        # get all metadata from input band
                        dst = bandMetadata
                        # set wkv and bandname
                        dst['wkv'] = bandMetadata.get('standard_name', '')
                        # first, try the name metadata
                        if 'name' in bandMetadata:
                            bandName = bandMetadata['name']
                        else:
                            # if it doesn't exist get name from NETCDF_VARNAME
                            bandName = bandMetadata.get('NETCDF_VARNAME', '')
                            if len(bandName) == 0:
                                bandName = bandMetadata.get(
                                    'dods_variable', '')

                            # remove digits added by gdal in
                            # exporting to netcdf...
                            if (len(bandName) > 0 and origin_is_nansat
                                    and fileExt == '.nc'):
                                if bandName[-1:].isdigit():
                                    bandName = bandName[:-1]
                                if bandName[-1:].isdigit():
                                    bandName = bandName[:-1]

                        # if still no bandname, create one
                        if len(bandName) == 0:
                            bandName = 'band_%03d' % iBand

                        dst['name'] = bandName

                        # remove non-necessary metadata from dst
                        for rmMetadata in rmMetadatas:
                            if rmMetadata in dst:
                                dst.pop(rmMetadata)

                        # append band with src and dst dictionaries
                        metaDict.append({'src': src, 'dst': dst})

        # create empty VRT dataset with geolocation only
        self._init_from_gdal_dataset(firstSubDataset, metadata=gdalMetadata)

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        self._create_complex_bands(filenames)

        if len(projection) == 0:
            # projection was not set automatically
            # get projection from GCPProjection
            projection = geoMetadata.get('GCPProjection', '')
        if len(projection) == 0:
            # no projection was found in dataset or metadata:
            # generate WGS84 by default
            projection = NSR().wkt
        # fix problem with MET.NO files where a, b given in m and XC/YC in km
        if ('UNIT["kilometre"' in projection
                and ',SPHEROID["Spheroid",6378273,7.331926543631893e-12]'
                in projection):
            projection = projection.replace(
                ',SPHEROID["Spheroid",6378273,7.331926543631893e-12]', '')
        # set projection
        self.dataset.SetProjection(self.repare_projection(projection))

        # check if GCPs were added from input dataset
        gcps = firstSubDataset.GetGCPs()
        gcpProjection = firstSubDataset.GetGCPProjection()

        # if no GCPs in input dataset: try to add GCPs from metadata
        if not gcps:
            gcps = self.add_gcps_from_metadata(geoMetadata)
        # if yet no GCPs: try to add GCPs from variables
        if not gcps:
            gcps = self.add_gcps_from_variables(inputFileName)

        if gcps:
            if len(gcpProjection) == 0:
                # get GCP projection and repare
                gcpProjection = self.repare_projection(
                    geoMetadata.get('GCPProjection', ''))
            # add GCPs to dataset
            self.dataset.SetGCPs(gcps, gcpProjection)
            self.dataset.SetProjection('')
            self._remove_geotransform()

        # Find proper bands and insert GEOLOCATION ARRAY into dataset
        if len(xDatasetSource) > 0 and len(yDatasetSource) > 0:
            self._add_geolocation(
                Geolocation.from_filenames(xDatasetSource, yDatasetSource))

        elif not gcps:
            # if no GCPs found and not GEOLOCATION ARRAY set:
            #   Set Nansat Geotransform if it is not set automatically
            geoTransform = self.dataset.GetGeoTransform()
            if len(geoTransform) == 0:
                geoTransformStr = geoMetadata.get('GeoTransform',
                                                  '(0|1|0|0|0|0|1)')
                geoTransform = eval(geoTransformStr.replace('|', ','))
                self.dataset.SetGeoTransform(geoTransform)

        subMetadata = firstSubDataset.GetMetadata()

        ### GET START TIME from METADATA
        time_coverage_start = None
        if 'start_time' in gdalMetadata:
            time_coverage_start = parse_time(gdalMetadata['start_time'])
        elif 'start_date' in gdalMetadata:
            time_coverage_start = parse_time(gdalMetadata['start_date'])
        elif 'time_coverage_start' in gdalMetadata:
            time_coverage_start = parse_time(
                gdalMetadata['time_coverage_start'])

        ### GET END TIME from METADATA
        time_coverage_end = None
        if 'stop_time' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['stop_time'])
        elif 'stop_date' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['stop_date'])
        elif 'time_coverage_stop' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['time_coverage_stop'])
        elif 'end_time' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['end_time'])
        elif 'end_date' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['end_date'])
        elif 'time_coverage_end' in gdalMetadata:
            time_coverage_end = parse_time(gdalMetadata['time_coverage_end'])

        ### GET start time from time variable
        if (time_coverage_start is None and 'time#standard_name' in subMetadata
                and subMetadata['time#standard_name'] == 'time'
                and 'time#units' in subMetadata):
            # get data from netcdf data
            ncFile = Dataset(inputFileName, 'r')
            time_var = ncFile.variables['time']
            t0 = time_var[0]
            if len(time_var) == 1:
                t1 = t0 + 1
            else:
                t1 = time_var[-1]

            time_units_start = parse(time_var.units, fuzzy=True, ignoretz=True)
            time_units_to_seconds = {
                'second': 1.0,
                'hour': 60 * 60.0,
                'day': 24 * 60 * 60.0
            }
            for key in time_units_to_seconds:
                if key in time_var.units:
                    factor = time_units_to_seconds[key]
                    break

            time_coverage_start = time_units_start + datetime.timedelta(
                seconds=t0 * factor)
            time_coverage_end = time_units_start + datetime.timedelta(
                seconds=t1 * factor)

        ## finally set values of time_coverage start and end if available
        if time_coverage_start is not None:
            self.dataset.SetMetadataItem('time_coverage_start',
                                         time_coverage_start.isoformat())
        if time_coverage_end is not None:
            self.dataset.SetMetadataItem('time_coverage_end',
                                         time_coverage_end.isoformat())

        if 'sensor' not in gdalMetadata:
            self.dataset.SetMetadataItem('sensor', 'unknown')
        if 'satellite' not in gdalMetadata:
            self.dataset.SetMetadataItem('satellite', 'unknown')
        if 'source_type' not in gdalMetadata:
            self.dataset.SetMetadataItem('source_type', 'unknown')
        if 'platform' not in gdalMetadata:
            self.dataset.SetMetadataItem('platform', 'unknown')
        if 'instrument' not in gdalMetadata:
            self.dataset.SetMetadataItem('instrument', 'unknown')

        self.logger.info('Use generic mapper - OK!')
Ejemplo n.º 6
0
def parse_time(time_string):
    return utils.parse_time(time_string)
Ejemplo n.º 7
0
    def test_parse_time_incorrect(self):
        dt = parse_time('2016-01-19Z')

        self.assertEqual(type(dt), datetime.datetime)