Ejemplo n.º 1
0
    def __init__(
        self,
        Nmesh,
        DataSource,
        Painter=None,
        paintbrush="cic",
        paintNmesh=None,
        dataset="PaintGrid",
        Nfile=0,
        writeFourier=False,
    ):

        # set the  input
        self.Nmesh = Nmesh
        self.datasource = DataSource
        self.dataset = dataset
        self.writeFourier = writeFourier

        # set the painter
        if Painter is None:
            Painter = Painter.create("DefaultPainter", paintbrush=paintbrush)
        self.painter = Painter
        self.painter.paintbrush = paintbrush

        # Nmesh for the painter
        if paintNmesh is None:
            paintNmesh = self.Nmesh
        self.paintNmesh = paintNmesh

        self.Nfile = Nfile
        if self.Nfile == 0:
            chunksize = 1024 * 1024 * 512
            self.Nfile = (self.Nmesh * self.Nmesh * self.Nmesh + chunksize - 1) // chunksize
Ejemplo n.º 2
0
def FieldType(ns):
    """
    Construct and return a `Field`:
    a tuple of (`DataSource`, `Painter`, `Transfer`)

    Notes
    -----
    *   the default Painter is set to `DefaultPainter`
    *   the default Transfer chain is set to 
        [`NormalizeDC`, `RemoveDC`, `AnisotropicCIC`]

    Parameters
    ----------
    fields_dict : OrderedDict
        an ordered dictionary where the keys are Plugin names
        and the values are instantiated Plugins

    Returns
    -------
    field : list
        list of (DataSource, Painter, Transfer)
    """
    # define the default Painter and Transfer
    default_painter = Painter.create("DefaultPainter")
    default_transfer = [Transfer.create(x) for x in ['NormalizeDC', 'RemoveDC', 'AnisotropicCIC']]

    # start with a default option for (DataSource, Painter, Transfer)
    field = [None, default_painter, default_transfer]

    # set the DataSource
    if 'DataSource' not in ns:
        raise ValueError("exactly one `DataSource` per field must be specified")
    field[0] = getattr(ns, 'DataSource')

    # set the Painter
    if 'Painter' in ns:
        field[1] = getattr(ns, 'Painter')

    # set the Transfer
    if 'Transfer' in ns:
        field[2] = getattr(ns, 'Transfer')

    return field
Ejemplo n.º 3
0
    def run(self):
        """
        Run the TidalTensor Algorithm
        """
        from itertools import product

        if self.smoothing is None:
            self.smoothing = self.field.BoxSize[0] / self.Nmesh
        elif (self.field.BoxSize / self.Nmesh > self.smoothing).any():
            raise ValueError("smoothing is too small")

        painter = Painter.create("DefaultPainter",
                                 weight="Mass",
                                 paintbrush="cic")
        real, stats = painter.paint(self.pm, self.field)
        complex = real.r2c()

        for t in [self.Smoothing, self.NormalizeDC]:
            t(complex.pm, complex)

        with self.points.open() as stream:
            [[Position]] = stream.read(['Position'], full=True)

        layout = self.pm.decompose(Position)
        pos1 = layout.exchange(Position)
        value = numpy.empty((3, 3, len(Position)))

        for u, v in product(range(3), range(3)):
            if self.comm.rank == 0:
                self.logger.info("Working on tensor element (%d, %d)" % (u, v))
            c2 = complex.copy()

            self.TidalTensor(u, v)(c2.pm, c2)
            c2.c2r(real)
            v1 = real.readout(pos1)
            v1 = layout.gather(v1)

            value[u, v] = v1

        return value.transpose((2, 0, 1))
Ejemplo n.º 4
0
    def run(self):
        """
        Run the TidalTensor Algorithm
        """
        from itertools import product
         
        if self.smoothing is None:
            self.smoothing = self.field.BoxSize[0] / self.Nmesh
        elif (self.field.BoxSize / self.Nmesh > self.smoothing).any():
            raise ValueError("smoothing is too small")
     
        painter = Painter.create("DefaultPainter", weight="Mass", paintbrush="cic")
        real, stats = painter.paint(self.pm, self.field)
        complex = real.r2c()

        for t in [self.Smoothing, self.NormalizeDC]:
            t(complex.pm, complex)

        with self.points.open() as stream:
            [[Position ]] = stream.read(['Position'], full=True)

        layout = self.pm.decompose(Position)
        pos1 = layout.exchange(Position)
        value = numpy.empty((3, 3, len(Position)))

        for u, v in product(range(3), range(3)):
            if self.comm.rank == 0:
                self.logger.info("Working on tensor element (%d, %d)" % (u, v))
            c2 = complex.copy()

            self.TidalTensor(u, v)(c2.pm, c2)
            c2.c2r(real)
            v1 = real.readout(pos1)
            v1 = layout.gather(v1)

            value[u, v] = v1

        return value.transpose((2, 0, 1))
Ejemplo n.º 5
0
    def __init__(self, Nmesh, DataSource, Painter=None, paintbrush='cic', paintNmesh=None, 
                    dataset='PaintGrid', Nfile=0, writeFourier=False):
                    
        # set the  input
        self.Nmesh        = Nmesh
        self.datasource   = DataSource
        self.dataset      = dataset
        self.writeFourier = writeFourier 
        
        # set the painter
        if Painter is None:
            Painter = Painter.create("DefaultPainter", paintbrush=paintbrush)
        self.painter = Painter
        self.painter.paintbrush = paintbrush
        
        # Nmesh for the painter
        if paintNmesh is None:
            paintNmesh = self.Nmesh
        self.paintNmesh = paintNmesh

        self.Nfile = Nfile
        if self.Nfile == 0:
            chunksize = 1024 * 1024 * 512
            self.Nfile = (self.Nmesh * self.Nmesh * self.Nmesh + chunksize - 1)// chunksize
Ejemplo n.º 6
0
    def run(self):
        """
        Run the Subsample algorithm
        """
        import mpsort
        from astropy.utils.misc import NumpyRNGContext

        if self.smoothing is None:
            self.smoothing = self.datasource.BoxSize[0] / self.Nmesh[0]
        elif (self.datasource.BoxSize / self.Nmesh > self.smoothing).any():
            raise ValueError("smoothing is too small")

        def Smoothing(pm, complex):
            k = pm.k
            k2 = 0
            for ki in k:
                ki2 = ki**2
                complex[:] *= numpy.exp(-0.5 * ki2 * self.smoothing**2)

        def NormalizeDC(pm, complex):
            """ removes the DC amplitude. This effectively
                divides by the mean
            """
            w = pm.w
            comm = pm.comm
            ind = []
            value = 0.0
            found = True
            for wi in w:
                if (wi != 0).all():
                    found = False
                    break
                ind.append((wi == 0).nonzero()[0][0])
            if found:
                ind = tuple(ind)
                value = numpy.abs(complex[ind])
            value = comm.allreduce(value)
            complex[:] /= value

        # open the datasource and keep the cache
        with self.datasource.keep_cache():

            painter = Painter.create("DefaultPainter", paintbrush='cic')
            real, stats = painter.paint(self.pm, self.datasource)
            complex = real.r2c()

            for t in [Smoothing, NormalizeDC]:
                t(self.pm, complex)

            complex.c2r(real)

            columns = ['Position', 'ID', 'Velocity']
            local_seed = utils.local_random_seed(self.seed, self.comm)

            dtype = numpy.dtype([
                ('Position', ('f4', 3)),
                ('Velocity', ('f4', 3)),
                ('ID', 'u8'),
                ('Density', 'f4'),
            ])

            subsample = [numpy.empty(0, dtype=dtype)]

            with self.datasource.open() as stream:
                for Position, ID, Velocity in stream.read(columns):

                    with NumpyRNGContext(local_seed):
                        u = numpy.random.uniform(size=len(ID))
                    keep = u < self.ratio
                    Nkeep = keep.sum()
                    if Nkeep == 0: continue
                    data = numpy.empty(Nkeep, dtype=dtype)
                    data['Position'][:] = Position[keep]
                    data['Velocity'][:] = Velocity[keep]
                    data['ID'][:] = ID[keep]

                    layout = self.pm.decompose(data['Position'])
                    pos1 = layout.exchange(data['Position'])
                    density1 = real.readout(pos1)
                    density = layout.gather(density1)

                    # normalize the position after reading out density!
                    data['Position'][:] /= self.datasource.BoxSize
                    data['Velocity'][:] /= self.datasource.BoxSize
                    data['Density'][:] = density
                    subsample.append(data)

        subsample = numpy.concatenate(subsample)
        mpsort.sort(subsample, orderby='ID', comm=self.comm)

        return subsample
Ejemplo n.º 7
0
    def __init__(self,  data, 
                        randoms, 
                        BoxSize=None, 
                        BoxPad=0.02, 
                        compute_fkp_weights=False, 
                        P0_fkp=None, 
                        nbar=None, 
                        fsky=None):
        """
        Parameters
        ----------
        data : DataSource
            the DataSource that corresponds to the 'data' catalog
        randoms : DataSource
            the DataSource that corresponds to the 'randoms' catalog
        BoxSize : {float, array_like (3,)}, optional
            the size of the Cartesian to box when gridding the data and randoms; 
            if not provided, the box will automatically be computed from the
            maximum extent of the randoms catalog
        BoxPad : float, optional
            if BoxSize is not provided, apply this padding to the box that
            is automatically created from the randoms catalog; default is ``0.02``
        compute_fkp_weights : bool, optional
            if ``True``, compute and apply FKP weights using `P0_fkp` and 
            the number density n(z) column from the input data sources; 
            default is ``False``
        P0_fkp : float, optional
            if ``compute_fkp_weights=True``, use this value in in the FKP 
            weights, which are defined as, :math:`w_\mathrm{FKP} = 1 / (1 + n_g(x) * P_0)`
        nbar : {str, float}, optional
            either the name of a file, giving ``(z, n(z))`` in columns, or a scalar float,
            which gives the constant n(z) value to use
        fsky : float, optional
            if ``nbar = None``, then the n(z) is computed from the randoms catalog, and
            the sky fraction covered by the survey is required to properly normalize
            the number density (for the volume calculation)
        """
        # set the cosmology
        self.cosmo = data.cosmo
        if self.cosmo is None:
            raise ValueError("FKPCatalog requires a cosmology")
        if data.cosmo is not randoms.cosmo:
            raise ValueError("mismatch between cosmology instances of `data` and `randoms` in `FKPCatalog`")
            
        # set the comm
        self.comm = data.comm
        if data.comm is not randoms.comm:
            raise ValueError("mismatch between communicators of `data` and `randoms` in `FKPCatalog`")
        
        # data and randoms datasources
        self.data    = data
        self.randoms = randoms

        # set the BoxSize and BoxPad
        self.BoxSize = BoxSize
        if self.BoxSize is not None:
            self.BoxSize = DataSource.BoxSizeParser(self.BoxSize)
        self.BoxPad = BoxPad
        
        # weights configuration
        self.compute_fkp_weights = compute_fkp_weights
        self.P0_fkp              = P0_fkp
        
        # n(z) configuration
        self.nbar = nbar
        self.fsky = fsky
        
        # use the default painter when painting
        self.painter = Painter.create('DefaultPainter')
Ejemplo n.º 8
0
    def run(self):
        """
        Run the Subsample algorithm
        """
        import mpsort
        from astropy.utils.misc import NumpyRNGContext

        if self.smoothing is None:
            self.smoothing = self.datasource.BoxSize[0] / self.Nmesh[0]
        elif (self.datasource.BoxSize / self.Nmesh > self.smoothing).any():
            raise ValueError("smoothing is too small")

        def Smoothing(pm, complex):
            k = pm.k
            k2 = 0
            for ki in k:
                ki2 = ki ** 2
                complex[:] *= numpy.exp(-0.5 * ki2 * self.smoothing ** 2)

        def NormalizeDC(pm, complex):
            """ removes the DC amplitude. This effectively
                divides by the mean
            """
            w = pm.w
            comm = pm.comm
            ind = []
            value = 0.0
            found = True
            for wi in w:
                if (wi != 0).all():
                    found = False
                    break
                ind.append((wi == 0).nonzero()[0][0])
            if found:
                ind = tuple(ind)
                value = numpy.abs(complex[ind])
            value = comm.allreduce(value)
            complex[:] /= value

        # open the datasource and keep the cache
        with self.datasource.keep_cache():

            painter = Painter.create("DefaultPainter", paintbrush="cic")
            real, stats = painter.paint(self.pm, self.datasource)
            complex = real.r2c()

            for t in [Smoothing, NormalizeDC]:
                t(self.pm, complex)

            complex.c2r(real)

            columns = ["Position", "ID", "Velocity"]
            local_seed = utils.local_random_seed(self.seed, self.comm)

            dtype = numpy.dtype([("Position", ("f4", 3)), ("Velocity", ("f4", 3)), ("ID", "u8"), ("Density", "f4")])

            subsample = [numpy.empty(0, dtype=dtype)]

            with self.datasource.open() as stream:
                for Position, ID, Velocity in stream.read(columns):

                    with NumpyRNGContext(local_seed):
                        u = numpy.random.uniform(size=len(ID))
                    keep = u < self.ratio
                    Nkeep = keep.sum()
                    if Nkeep == 0:
                        continue
                    data = numpy.empty(Nkeep, dtype=dtype)
                    data["Position"][:] = Position[keep]
                    data["Velocity"][:] = Velocity[keep]
                    data["ID"][:] = ID[keep]

                    layout = self.pm.decompose(data["Position"])
                    pos1 = layout.exchange(data["Position"])
                    density1 = real.readout(pos1)
                    density = layout.gather(density1)

                    # normalize the position after reading out density!
                    data["Position"][:] /= self.datasource.BoxSize
                    data["Velocity"][:] /= self.datasource.BoxSize
                    data["Density"][:] = density
                    subsample.append(data)

        subsample = numpy.concatenate(subsample)
        mpsort.sort(subsample, orderby="ID", comm=self.comm)

        return subsample
Ejemplo n.º 9
0
    def __init__(self,
                 data,
                 randoms,
                 BoxSize=None,
                 BoxPad=0.02,
                 compute_fkp_weights=False,
                 P0_fkp=None,
                 nbar=None,
                 fsky=None):
        """
        Parameters
        ----------
        data : DataSource
            the DataSource that corresponds to the 'data' catalog
        randoms : DataSource
            the DataSource that corresponds to the 'randoms' catalog
        BoxSize : {float, array_like (3,)}, optional
            the size of the Cartesian to box when gridding the data and randoms; 
            if not provided, the box will automatically be computed from the
            maximum extent of the randoms catalog
        BoxPad : float, optional
            if BoxSize is not provided, apply this padding to the box that
            is automatically created from the randoms catalog; default is ``0.02``
        compute_fkp_weights : bool, optional
            if ``True``, compute and apply FKP weights using `P0_fkp` and 
            the number density n(z) column from the input data sources; 
            default is ``False``
        P0_fkp : float, optional
            if ``compute_fkp_weights=True``, use this value in in the FKP 
            weights, which are defined as, :math:`w_\mathrm{FKP} = 1 / (1 + n_g(x) * P_0)`
        nbar : {str, float}, optional
            either the name of a file, giving ``(z, n(z))`` in columns, or a scalar float,
            which gives the constant n(z) value to use
        fsky : float, optional
            if ``nbar = None``, then the n(z) is computed from the randoms catalog, and
            the sky fraction covered by the survey is required to properly normalize
            the number density (for the volume calculation)
        """
        # set the cosmology
        self.cosmo = data.cosmo
        if self.cosmo is None:
            raise ValueError("FKPCatalog requires a cosmology")
        if data.cosmo is not randoms.cosmo:
            raise ValueError(
                "mismatch between cosmology instances of `data` and `randoms` in `FKPCatalog`"
            )

        # set the comm
        self.comm = data.comm
        if data.comm is not randoms.comm:
            raise ValueError(
                "mismatch between communicators of `data` and `randoms` in `FKPCatalog`"
            )

        # data and randoms datasources
        self.data = data
        self.randoms = randoms

        # set the BoxSize and BoxPad
        self.BoxSize = BoxSize
        if self.BoxSize is not None:
            self.BoxSize = DataSource.BoxSizeParser(self.BoxSize)
        self.BoxPad = BoxPad

        # weights configuration
        self.compute_fkp_weights = compute_fkp_weights
        self.P0_fkp = P0_fkp

        # n(z) configuration
        self.nbar = nbar
        self.fsky = fsky

        # use the default painter when painting
        self.painter = Painter.create('DefaultPainter')