Ejemplo n.º 1
0
    def test_multi(self):

        vm = MultiPlot()

        g = nx.erdos_renyi_graph(1000, 0.1)
        model = sir.SIRModel(g)
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model.set_initial_status(config)
        iterations = model.iteration_bunch(200)
        viz = VisualizeDiffusion(model, iterations)
        p = viz.plot()

        vm.add_plot(p)

        g = nx.erdos_renyi_graph(1000, 0.1)
        model = sir.SIRModel(g)
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model.set_initial_status(config)
        iterations = model.iteration_bunch(200)
        viz = VisualizeDiffusion(model, iterations)
        p1 = viz.plot()

        vm.add_plot(p1)
        m = vm.plot()
        self.assertIsInstance(m, Column)
Ejemplo n.º 2
0
    def test_prevalence_comparison(self):

        # Network topology
        g = nx.erdos_renyi_graph(1000, 0.1)

        # Model selection
        model = sir.SIRModel(g)

        # Model Configuration
        cfg = mc.Configuration()
        cfg.add_model_parameter('beta', 0.001)
        cfg.add_model_parameter('gamma', 0.02)
        cfg.add_model_parameter("percentage_infected", 0.01)
        model.set_initial_status(cfg)

        iterations = model.iteration_bunch(200)
        trends = model.build_trends(iterations)

        model1 = si.SIModel(g)
        cfg = mc.Configuration()
        cfg.add_model_parameter('beta', 0.001)
        cfg.add_model_parameter("percentage_infected", 0.01)
        model1.set_initial_status(cfg)

        iterations = model1.iteration_bunch(200)
        trends1 = model1.build_trends(iterations)

        viz = DiffusionPrevalenceComparison([model, model1], [trends, trends1])
        viz.plot("prev_comparison.pdf")
        os.remove("prev_comparison.pdf")
Ejemplo n.º 3
0
def sir_model(g, er_g, ba_g, g_stat):
    print '\nSIR MODEL SIMULATION WITH GAMMA ' + g_stat.upper() + ' THAN BETA'
    print 'MODEL CONFIGURATION'

    beta = float(raw_input('INFECTION PROBABILITY: '))
    gamma = float(raw_input('REMOVAL PROBABILITY: '))

    if g_stat == 'smaller':
        while gamma >= beta:
            print 'ERROR! GAMMA HAS TO BE SMALLER THAN BETA!'
            gamma = float(raw_input('REMOVAL PROBABILITY: '))
    else:
        while gamma <= beta:
            print 'ERROR! GAMMA HAS TO BE GREATER THAN BETA!'
            gamma = float(raw_input('REMOVAL PROBABILITY: '))

    cfg = mc.Configuration()
    cfg.add_model_parameter('beta', beta)
    cfg.add_model_parameter('gamma', gamma)
    cfg.add_model_parameter('percentage_infected',
                            float(raw_input('PERCENTAGE INFECTED: ')))

    for_comparison = dict()

    for network in [g, er_g, ba_g]:
        model_sir = sir.SIRModel(network)
        model_sir.set_initial_status(cfg)
        iterations = model_sir.iteration_bunch(200)
        trends_sir = model_sir.build_trends(iterations)

        if network is g:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_"
                     + g_stat + ".pdf")
            for_comparison['original_sir'] = [model_sir, trends_sir]
        elif network is er_g:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_er_"
                     + g_stat + ".pdf")
            for_comparison['er_sir'] = [model_sir, trends_sir]
        else:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_ba_"
                     + g_stat + ".pdf")
            for_comparison['ba_sir'] = [model_sir, trends_sir]

    viz = DiffusionTrendComparison([
                            for_comparison['original_sir'][0],
                            for_comparison['er_sir'][0],
                            for_comparison['ba_sir'][0]
                         ],
                         [
                            for_comparison['original_sir'][1],
                            for_comparison['er_sir'][1],
                            for_comparison['ba_sir'][1]
                         ])
    viz.plot("../../report/images/spreading/sir/trend_comparison_"
             + g_stat + ".pdf")
Ejemplo n.º 4
0
 def test_sir_model(self):
     g = nx.erdos_renyi_graph(1000, 0.1)
     model = sir.SIRModel(g)
     config = mc.Configuration()
     config.add_model_parameter('beta', 0.5)
     config.add_model_parameter('gamma', 0.2)
     config.add_model_parameter("percentage_infected", 0.1)
     model.set_initial_status(config)
     iterations = model.iteration_bunch(10)
     self.assertEqual(len(iterations), 10)
Ejemplo n.º 5
0
 def test_visualize_prevalence(self):
     g = nx.erdos_renyi_graph(1000, 0.1)
     model = sir.SIRModel(g)
     config = mc.Configuration()
     config.add_model_parameter('beta', 0.001)
     config.add_model_parameter('gamma', 0.01)
     config.add_model_parameter("percentage_infected", 0.05)
     model.set_initial_status(config)
     iterations = model.iteration_bunch(200)
     trends = model.build_trends(iterations)
     viz = DiffusionPrevalence(model, trends)
     p = viz.plot()
     self.assertIsInstance(p, Figure)
Ejemplo n.º 6
0
def get_epidemic_sir(graph, beta, gamma, perc_inf, infected_nodes):
    model_sir = sir.SIRModel(graph)

    cfg_sir = mc.Configuration()
    cfg_sir.add_model_parameter("beta", beta)  # infection
    cfg_sir.add_model_parameter("gamma", gamma)  # recovery
    cfg_sir.add_model_parameter("percentage_infected", perc_inf)
    cfg_sir.add_model_parameter("Infected", infected_nodes)
    model_sir.set_initial_status(cfg_sir)

    iterations_sir = model_sir.iteration_bunch(100, node_status=True)
    trends_sir = model_sir.build_trends(iterations_sir)
    viz_sir = DiffusionTrend(model_sir, trends_sir)
    viz_sir.plot()
Ejemplo n.º 7
0
def simulate_sir_on_barabasi_albert():
    print('######################################')
    print('Simulating SIR Model on Barabasi-Albert Graph...')
    print('######################################')
    g = nx.barabasi_albert_graph(1000, 10)
    model = sir.SIRModel(g)
    cfg = mc.Configuration()
    cfg.add_model_parameter('beta', 0.01)
    cfg.add_model_parameter('gamma', 0.005)
    cfg.add_model_parameter("percentage_infected", 0.05)
    model.set_initial_status(cfg)
    iterations = model.iteration_bunch(200)
    trends = model.build_trends(iterations)
    draw_epidemic_plot(model, trends)
Ejemplo n.º 8
0
def simulate_sir_on_erdos_renyi():
    print('######################################')
    print('Simulating SIR Model on Erdős-Rényi Graph...')
    print('######################################')
    g = nx.erdos_renyi_graph(1000, 0.15)
    model = sir.SIRModel(g)
    cfg = mc.Configuration()
    cfg.add_model_parameter('beta', 0.01)
    cfg.add_model_parameter('gamma', 0.005)
    cfg.add_model_parameter("percentage_infected", 0.05)
    model.set_initial_status(cfg)
    iterations = model.iteration_bunch(200)
    trends = model.build_trends(iterations)
    draw_epidemic_plot(model, trends)
Ejemplo n.º 9
0
    def test_visualize(self):
        g = nx.erdos_renyi_graph(1000, 0.1)
        model = sir.SIRModel(g)
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model.set_initial_status(config)
        iterations = model.iteration_bunch(200)
        trends = model.build_trends(iterations)

        # Visualization
        viz = DiffusionTrend(model, trends)
        viz.plot("diffusion.pdf")
        os.remove("diffusion.pdf")
Ejemplo n.º 10
0
def sirModel(graph, iteration):
    # Model Selection
    sir_model = sir.SIRModel(graph)

    # Model Configuration
    config = mc.Configuration()
    config.add_model_parameter('beta', 0.005)
    config.add_model_parameter('gamma', 0.01)
    config.add_model_parameter("percentage_infected", 0.01)
    sir_model.set_initial_status(config)

    # Simulation
    iterations = sir_model.iteration_bunch(iteration)
    trends = sir_model.build_trends(iterations)

    viz = DiffusionTrend(sir_model, trends)
    p = viz.plot(width=800, height=800)
    show(p)
Ejemplo n.º 11
0
def create_sir_model(graph, beta=0.01, gamma=0.01, infected=0.01):
    """    
    Susceptible     0
    Infected        1
    Removed         2

    beta - probability of transition from S to I
    gamma - probability of transition from I to R
    infected - part of population infected at the begining
    """
    model = sir.SIRModel(graph)

    # Model Configuration
    cfg = mc.Configuration()
    cfg.add_model_parameter('beta', beta)
    cfg.add_model_parameter('gamma', gamma)
    cfg.add_model_parameter('percentage_infected', infected)
    model.set_initial_status(cfg)

    return model
Ejemplo n.º 12
0
    def test_multi(self):

        # Network topology
        g = nx.erdos_renyi_graph(1000, 0.1)

        # Model selection
        model1 = sir.SIRModel(g)

        # Model Configuration
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model1.set_initial_status(config)

        # Simulation multiple execution
        trends = multi_runs(model1,
                            execution_number=10,
                            iteration_number=100,
                            infection_sets=None,
                            nprocesses=4)
        self.assertIsNotNone(trends)
Ejemplo n.º 13
0
    def test_multi_initial_set(self):
        # Network topology
        g = nx.erdos_renyi_graph(1000, 0.1)

        # Model selection
        model1 = sir.SIRModel(g)

        # Model Configuration
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        model1.set_initial_status(config)

        # Simulation multiple execution
        infection_sets = [(1, 2, 3, 4, 5), (3, 23, 22, 54, 2),
                          (98, 2, 12, 26, 3), (4, 6, 9)]
        trends = multi_runs(model1,
                            execution_number=4,
                            iteration_number=100,
                            infection_sets=infection_sets,
                            nprocesses=4)
        self.assertIsNotNone(trends)
Ejemplo n.º 14
0
import networkx as nx
import ndlib.models.epidemics.SIRModel as sir
import ndlib.models.ModelConfig as mc
from bokeh.io import output_notebook, show
from ndlib.viz.bokeh.DiffusionTrend import DiffusionTrend
from ndlib.viz.bokeh.DiffusionPrevalence import DiffusionPrevalence
from ndlib.viz.bokeh.MultiPlot import MultiPlot
import ndlib.models.epidemics.SISModel as sis
import ndlib.models.epidemics.SIModel as si
import ndlib.models.epidemics.ThresholdModel as th

# Network Definition
g = nx.erdos_renyi_graph(1000, 0.1)

# Model Selection
model = sir.SIRModel(g)

# Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
config.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(config)

# Simulation
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

viz = DiffusionTrend(model, trends)
p = viz.plot(width=400, height=400)
show(p)