Ejemplo n.º 1
0
def create_all_dags(args, neural_factory):
    '''
    creates train and eval dags as well as their callbacks
    returns train loss tensor and callbacks'''

    # parse the config files
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        spkr_params = yaml.load(f)

    sample_rate = spkr_params['sample_rate']

    # Calculate num_workers for dataloader
    total_cpus = os.cpu_count()
    cpu_per_traindl = max(int(total_cpus / neural_factory.world_size), 1)

    # create separate data layers for eval
    # we need separate eval dags for separate eval datasets
    # but all other modules in these dags will be shared

    eval_dl_params = copy.deepcopy(spkr_params["AudioToSpeechLabelDataLayer"])
    eval_dl_params.update(spkr_params["AudioToSpeechLabelDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    eval_dl_params[
        'shuffle'] = False  # To grab  the file names without changing data_layer

    data_layer_test = nemo_asr.AudioToSpeechLabelDataLayer(
        manifest_filepath=args.eval_datasets[0],
        labels=None,
        batch_size=args.batch_size,
        num_workers=cpu_per_traindl,
        **eval_dl_params,
        # normalize_transcripts=False
    )
    # create shared modules

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate,
        **spkr_params["AudioToMelSpectrogramPreprocessor"],
    )

    # (QuartzNet uses the Jasper baseline encoder and decoder)
    encoder = nemo_asr.JasperEncoder(**spkr_params["JasperEncoder"], )

    decoder = nemo_asr.JasperDecoderForSpkrClass(
        feat_in=spkr_params['JasperEncoder']['jasper'][-1]['filters'],
        num_classes=254,
        emb_sizes=spkr_params['JasperDecoderForSpkrClass']['emb_sizes'].split(
            ','),
        pool_mode=spkr_params["JasperDecoderForSpkrClass"]['pool_mode'],
    )

    # --- Assemble Validation DAG --- #
    audio_signal_test, audio_len_test, label_test, _ = data_layer_test()

    processed_signal_test, processed_len_test = data_preprocessor(
        input_signal=audio_signal_test, length=audio_len_test)

    encoded_test, _ = encoder(audio_signal=processed_signal_test,
                              length=processed_len_test)

    _, embeddings = decoder(encoder_output=encoded_test)

    return embeddings, label_test
Ejemplo n.º 2
0
def create_all_dags(args, neural_factory):
    """
    creates train and eval dags as well as their callbacks
    returns train loss tensor and callbacks"""

    # parse the config files
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        spkr_params = yaml.load(f)

    sample_rate = spkr_params["sample_rate"]
    time_length = spkr_params.get("time_length", 8)
    logging.info("max time length considered is {} sec".format(time_length))

    # Calculate num_workers for dataloader
    total_cpus = os.cpu_count()
    cpu_per_traindl = max(int(total_cpus / neural_factory.world_size), 1) // 2

    # create data layer for training
    train_dl_params = copy.deepcopy(spkr_params["AudioToSpeechLabelDataLayer"])
    train_dl_params.update(spkr_params["AudioToSpeechLabelDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]
    audio_augmentor = spkr_params.get("AudioAugmentor", None)
    # del train_dl_params["normalize_transcripts"]

    data_layer_train = nemo_asr.AudioToSpeechLabelDataLayer(
        manifest_filepath=args.train_dataset,
        labels=None,
        batch_size=args.batch_size,
        num_workers=cpu_per_traindl,
        augmentor=audio_augmentor,
        time_length=time_length,
        **train_dl_params,
        # normalize_transcripts=False
    )

    N = len(data_layer_train)
    steps_per_epoch = int(N / (args.batch_size * args.iter_per_step * args.num_gpus))

    logging.info("Number of steps per epoch {}".format(steps_per_epoch))
    # create separate data layers for eval
    # we need separate eval dags for separate eval datasets
    # but all other modules in these dags will be shared

    eval_dl_params = copy.deepcopy(spkr_params["AudioToSpeechLabelDataLayer"])
    eval_dl_params.update(spkr_params["AudioToSpeechLabelDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]

    data_layers_test = []
    for test_set in args.eval_datasets:

        data_layer_test = nemo_asr.AudioToSpeechLabelDataLayer(
            manifest_filepath=test_set,
            labels=data_layer_train.labels,
            batch_size=args.batch_size,
            num_workers=cpu_per_traindl,
            time_length=time_length,
            **eval_dl_params,
            # normalize_transcripts=False
        )
        data_layers_test.append(data_layer_test)
    # create shared modules

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate, **spkr_params["AudioToMelSpectrogramPreprocessor"],
    )

    spectr_augment_config = spkr_params.get("SpectrogramAugmentation", None)
    if spectr_augment_config:
        data_spectr_augmentation = nemo_asr.SpectrogramAugmentation(**spectr_augment_config)
    # (QuartzNet uses the Jasper baseline encoder and decoder)
    encoder = nemo_asr.JasperEncoder(**spkr_params["JasperEncoder"],)

    decoder = nemo_asr.JasperDecoderForSpkrClass(
        feat_in=spkr_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=data_layer_train.num_classes,
        pool_mode=spkr_params["JasperDecoderForSpkrClass"]['pool_mode'],
        emb_sizes=spkr_params["JasperDecoderForSpkrClass"]["emb_sizes"].split(","),
    )
    if os.path.exists(args.checkpoint_dir + "/JasperEncoder-STEP-100.pt"):
        encoder.restore_from(args.checkpoint_dir + "/JasperEncoder-STEP-100.pt")
        logging.info("Pretrained Encoder loaded")

    weight = None
    xent_loss = nemo_asr.CrossEntropyLossNM(weight=weight)

    # assemble train DAG

    audio_signal, audio_signal_len, label, label_len = data_layer_train()

    processed_signal, processed_signal_len = data_preprocessor(input_signal=audio_signal, length=audio_signal_len)

    if spectr_augment_config:
        processed_signal = data_spectr_augmentation(input_spec=processed_signal)

    encoded, encoded_len = encoder(audio_signal=processed_signal, length=processed_signal_len)

    logits, _ = decoder(encoder_output=encoded)
    loss = xent_loss(logits=logits, labels=label)

    # create train callbacks
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss, logits, label],
        print_func=partial(monitor_classification_training_progress, eval_metric=[1]),
        step_freq=args.print_freq,
        get_tb_values=lambda x: [("train_loss", x[0])],
        tb_writer=neural_factory.tb_writer,
    )

    callbacks = [train_callback]

    if args.checkpoint_dir or args.load_dir:
        chpt_callback = nemo.core.CheckpointCallback(
            folder=args.checkpoint_dir,
            load_from_folder=args.checkpoint_dir,  # load dir
            step_freq=args.checkpoint_save_freq,
            checkpoints_to_keep=125,
        )

        callbacks.append(chpt_callback)

    # --- Assemble Validation DAG --- #

    for i, eval_layer in enumerate(data_layers_test):

        audio_signal_test, audio_len_test, label_test, _ = eval_layer()
        processed_signal_test, processed_len_test = data_preprocessor(
            input_signal=audio_signal_test, length=audio_len_test
        )
        encoded_test, encoded_len_test = encoder(audio_signal=processed_signal_test, length=processed_len_test)
        logits_test, _ = decoder(encoder_output=encoded_test)
        loss_test = xent_loss(logits=logits_test, labels=label_test)

        tagname = os.path.dirname(args.eval_datasets[i]).split("/")[-1] + "_" + str(i)
        print(tagname)
        eval_callback = nemo.core.EvaluatorCallback(
            eval_tensors=[loss_test, logits_test, label_test],
            user_iter_callback=partial(process_classification_evaluation_batch, top_k=1),
            user_epochs_done_callback=partial(process_classification_evaluation_epoch, tag=tagname),
            eval_step=args.eval_freq,  # How often we evaluate the model on the test set
            tb_writer=neural_factory.tb_writer,
        )

        callbacks.append(eval_callback)

    return loss, callbacks, steps_per_epoch, loss_test, logits_test, label_test
    def test_quartznet_speaker_reco_training(self):
        """Integtaion test that instantiates a small QuartzNet model for speaker recognition and tests training with the
        sample an4 data.
        Training is run for 3 forward and backward steps and asserts that loss after 3 steps is smaller than the loss
        at the first step.
        """
        with open(
                os.path.abspath(
                    os.path.join(os.path.dirname(__file__),
                                 "../data/quartznet_spkr_test.yaml"))) as file:
            spkr_params = self.yaml.load(file)
        dl = nemo_asr.AudioToSpeechLabelDataLayer(
            manifest_filepath=self.manifest_filepath,
            labels=None,
            batch_size=10,
        )
        sample_rate = 16000

        preprocessing = nemo_asr.AudioToMelSpectrogramPreprocessor(
            sample_rate=sample_rate,
            **spkr_params["AudioToMelSpectrogramPreprocessor"],
        )
        jasper_encoder = nemo_asr.JasperEncoder(**spkr_params['JasperEncoder'])
        jasper_decoder = nemo_asr.JasperDecoderForSpkrClass(
            feat_in=spkr_params['JasperEncoder']['jasper'][-1]['filters'],
            num_classes=dl.num_classes,
            pool_mode=spkr_params['JasperDecoderForSpkrClass']['pool_mode'],
            emb_sizes=spkr_params["JasperDecoderForSpkrClass"]
            ["emb_sizes"].split(","),
        )
        ce_loss = nemo_asr.CrossEntropyLossNM()

        # DAG
        audio_signal, a_sig_length, targets, targets_len = dl()
        processed_signal, p_length = preprocessing(input_signal=audio_signal,
                                                   length=a_sig_length)

        encoded, encoded_len = jasper_encoder(audio_signal=processed_signal,
                                              length=p_length)
        # logging.info(jasper_encoder)
        log_probs, _ = jasper_decoder(encoder_output=encoded)
        loss = ce_loss(logits=log_probs, labels=targets)

        loss_list = []
        callback = nemo.core.SimpleLossLoggerCallback(
            tensors=[loss],
            print_func=partial(self.print_and_log_loss,
                               loss_log_list=loss_list),
            step_freq=1)
        self.nf.random_seed = 42
        self.nf.train(
            [loss],
            callbacks=[callback],
            optimizer="sgd",
            optimization_params={
                "max_steps": 4,
                "lr": 0.002
            },
        )
        self.nf.reset_trainer()

        # Assert that training loss went down
        assert loss_list[-1] < loss_list[0]