Ejemplo n.º 1
0
    def build_components(self,encoder_module=None,decoder_module=None):
        """
        Initializes all neural modules

        Arguments:
            encoder_module:  A neural module with the same neural type signature
                as the Jasper Encoder
            decoder_module:  A neural module with the same neural type signature
                as the Jasper CTC decoder
        """
        self.data_layer = AudioInferDataLayer(sample_rate=self.model_definition['sample_rate'])
        self.data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
            sample_rate=self.model_definition['sample_rate'],
            **self.model_definition["AudioToMelSpectrogramPreprocessor"])
        if encoder_module is not None:
            # Pass in an already instantiated neural module for the encoder
            assert isinstance(encoder_module,NeuralModule), 'encoder is not a neural module'
            self.encoder = encoder_module
        else:
            self.encoder = nemo_asr.JasperEncoder(
                feat_in=self.model_definition['AudioToMelSpectrogramPreprocessor']['features'],
                **self.model_definition['JasperEncoder'])
        if decoder_module is not None:
            # Pass in an already instantiated neural module for the decoder
            assert isinstance(decoder_module,NeuralModule), 'decoder is not a neural module'
            self.decoder = decoder_module
        else:
            self.decoder = nemo_asr.JasperDecoderForCTC(
                feat_in=self.model_definition["JasperEncoder"]["jasper"][-1]["filters"],num_classes=len(self.vocab))
        self.greedy_decoder = nemo_asr.GreedyCTCDecoder()
    def __init__(self):
        """Loads pre-trained ASR model"""
        self.asr_conf = parse_yaml()["asr"]
        device = nemo.core.DeviceType.CPU
        self.nf = nemo.core.NeuralModuleFactory(placement=device)
        # load model configuration
        jasper_params = parse_yaml(
            os.path.join(self.asr_conf["model_dir"], "quartznet15x5.yaml"))
        self.labels = jasper_params["labels"]
        self.sample_rate = jasper_params["sample_rate"]

        # preprocessor
        self.eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
        self.eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
        del self.eval_dl_params["train"]
        del self.eval_dl_params["eval"]
        self.preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
            sample_rate = self.sample_rate,
            **jasper_params["AudioPreprocessing"])
        
        # model encoder
        feats = jasper_params["AudioPreprocessing"]["features"]
        self.jasper_encoder = nemo_asr.JasperEncoder(
            feat_in = feats,
            **jasper_params["JasperEncoder"])
        self.jasper_encoder.restore_from(
                            os.path.join(self.asr_conf["model_dir"],
                                        "JasperEncoder-STEP-247400.pt"))

        # model decoder
        filters = jasper_params["JasperEncoder"]["jasper"][-1]["filters"]
        self.jasper_decoder = nemo_asr.JasperDecoderForCTC(
            feat_in = filters,
            num_classes=len(self.labels))
        self.jasper_decoder.restore_from(
                            os.path.join(self.asr_conf["model_dir"],
                                        "JasperDecoderForCTC-STEP-247400.pt"))

        self.nf.logger.info('================================')
        self.nf.logger.info(
            f"Number of parameters in encoder: {self.jasper_encoder.num_weights}")
        self.nf.logger.info(
            f"Number of parameters in decoder: {self.jasper_decoder.num_weights}")
        self.nf.logger.info(
            f"Total number of parameters in model: "
            f"{self.jasper_decoder.num_weights + self.jasper_encoder.num_weights}")
        self.nf.logger.info('================================')
        
        # CTC decoder
        if self.asr_conf["decoder"] == "beam":
            self.ctc_decoder = nemo_asr.BeamSearchDecoderWithLM(
                    vocab = self.labels,
                    beam_width = self.asr_conf["beam_width"],
                    alpha = self.asr_conf["alpha"],
                    beta = self.asr_conf["beta"],
                    lm_path = self.asr_conf["lm_path"],
                    num_cpus = max(os.cpu_count(), 1))
        else:
            self.ctc_decoder = nemo_asr.GreedyCTCDecoder()
Ejemplo n.º 3
0
def create_all_dags(args, neural_factory):
    logger = neural_factory.logger
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)
    vocab = jasper_params['labels']
    sample_rate = jasper_params['sample_rate']

    # Calculate num_workers for dataloader
    total_cpus = os.cpu_count()
    cpu_per_traindl = max(int(total_cpus / neural_factory.world_size), 1)

    # perturb_config = jasper_params.get('perturb', None)
    train_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    train_dl_params.update(jasper_params["AudioToTextDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]
    # del train_dl_params["normalize_transcripts"]

    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.train_dataset,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.batch_size,
        num_workers=cpu_per_traindl,
        **train_dl_params,
        # normalize_transcripts=False
    )

    N = len(data_layer)
    steps_per_epoch = int(
        N / (args.batch_size * args.iter_per_step * args.num_gpus))
    logger.info('Have {0} examples to train on.'.format(N))

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate,
        **jasper_params["AudioToMelSpectrogramPreprocessor"])

    multiply_batch_config = jasper_params.get('MultiplyBatch', None)
    if multiply_batch_config:
        multiply_batch = nemo_asr.MultiplyBatch(**multiply_batch_config)

    spectr_augment_config = jasper_params.get('SpectrogramAugmentation', None)
    if spectr_augment_config:
        data_spectr_augmentation = nemo_asr.SpectrogramAugmentation(
            **spectr_augment_config)

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    data_layers_eval = []

    if args.eval_datasets:
        for eval_datasets in args.eval_datasets:
            data_layer_eval = nemo_asr.AudioToTextDataLayer(
                manifest_filepath=eval_datasets,
                sample_rate=sample_rate,
                labels=vocab,
                batch_size=args.eval_batch_size,
                num_workers=cpu_per_traindl,
                **eval_dl_params,
            )

            data_layers_eval.append(data_layer_eval)
    else:
        neural_factory.logger.info("There were no val datasets passed")

    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioToMelSpectrogramPreprocessor"]["features"],
        **jasper_params["JasperEncoder"])

    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab),
        factory=neural_factory)

    ctc_loss = nemo_asr.CTCLossNM(
        num_classes=len(vocab))

    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    logger.info('================================')
    logger.info(
        f"Number of parameters in encoder: {jasper_encoder.num_weights}")
    logger.info(
        f"Number of parameters in decoder: {jasper_decoder.num_weights}")
    logger.info(
        f"Total number of parameters in decoder: "
        f"{jasper_decoder.num_weights + jasper_encoder.num_weights}")
    logger.info('================================')

    # Train DAG
    audio_signal_t, a_sig_length_t, \
        transcript_t, transcript_len_t = data_layer()
    processed_signal_t, p_length_t = data_preprocessor(
        input_signal=audio_signal_t,
        length=a_sig_length_t)

    if multiply_batch_config:
        processed_signal_t, p_length_t, transcript_t, transcript_len_t = \
            multiply_batch(
                in_x=processed_signal_t, in_x_len=p_length_t,
                in_y=transcript_t,
                in_y_len=transcript_len_t)

    if spectr_augment_config:
        processed_signal_t = data_spectr_augmentation(
            input_spec=processed_signal_t)

    encoded_t, encoded_len_t = jasper_encoder(
        audio_signal=processed_signal_t,
        length=p_length_t)
    log_probs_t = jasper_decoder(encoder_output=encoded_t)
    predictions_t = greedy_decoder(log_probs=log_probs_t)
    loss_t = ctc_loss(
        log_probs=log_probs_t,
        targets=transcript_t,
        input_length=encoded_len_t,
        target_length=transcript_len_t)

    # Callbacks needed to print info to console and Tensorboard
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss_t, predictions_t, transcript_t, transcript_len_t],
        print_func=partial(
            monitor_asr_train_progress,
            labels=vocab,
            logger=logger),
        get_tb_values=lambda x: [("loss", x[0])],
        tb_writer=neural_factory.tb_writer,
    )

    chpt_callback = nemo.core.CheckpointCallback(
        folder=neural_factory.checkpoint_dir,
        step_freq=args.checkpoint_save_freq)

    callbacks = [train_callback, chpt_callback]

    # assemble eval DAGs
    for i, eval_dl in enumerate(data_layers_eval):
        audio_signal_e, a_sig_length_e, transcript_e, transcript_len_e = \
            eval_dl()
        processed_signal_e, p_length_e = data_preprocessor(
            input_signal=audio_signal_e,
            length=a_sig_length_e)
        encoded_e, encoded_len_e = jasper_encoder(
            audio_signal=processed_signal_e,
            length=p_length_e)
        log_probs_e = jasper_decoder(encoder_output=encoded_e)
        predictions_e = greedy_decoder(log_probs=log_probs_e)
        loss_e = ctc_loss(
            log_probs=log_probs_e,
            targets=transcript_e,
            input_length=encoded_len_e,
            target_length=transcript_len_e)

        # create corresponding eval callback
        tagname = os.path.basename(args.eval_datasets[i]).split(".")[0]
        eval_callback = nemo.core.EvaluatorCallback(
            eval_tensors=[loss_e, predictions_e,
                          transcript_e, transcript_len_e],
            user_iter_callback=partial(
                process_evaluation_batch,
                labels=vocab),
            user_epochs_done_callback=partial(
                process_evaluation_epoch,
                tag=tagname,
                logger=logger),
            eval_step=args.eval_freq,
            tb_writer=neural_factory.tb_writer)

        callbacks.append(eval_callback)
    return loss_t, callbacks, steps_per_epoch
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description='Jasper')
    parser.add_argument("--local_rank", default=None, type=int)
    parser.add_argument("--batch_size", default=32, type=int)
    parser.add_argument("--model_config", type=str, required=True)
    parser.add_argument("--eval_datasets", type=str, required=True)
    parser.add_argument("--load_dir", type=str, required=True)
    parser.add_argument("--vocab_file", type=str, required=True)
    parser.add_argument("--save_logprob", default=None, type=str)
    parser.add_argument("--lm_path", default=None, type=str)
    parser.add_argument("--beam_width", default=50, type=int)
    parser.add_argument("--alpha", default=2.0, type=float)
    parser.add_argument("--beta", default=1.0, type=float)
    parser.add_argument("--cutoff_prob", default=0.99, type=float)
    parser.add_argument("--cutoff_top_n", default=40, type=int)

    args = parser.parse_args()
    batch_size = args.batch_size
    load_dir = args.load_dir

    if args.local_rank is not None:
        if args.lm_path:
            raise NotImplementedError(
                "Beam search decoder with LM does not currently support "
                "evaluation on multi-gpu.")
        device = nemo.core.DeviceType.AllGpu
    else:
        device = nemo.core.DeviceType.GPU

    # Instantiate Neural Factory with supported backend
    neural_factory = nemo.core.NeuralModuleFactory(
        backend=nemo.core.Backend.PyTorch,
        local_rank=args.local_rank,
        optimization_level=nemo.core.Optimization.mxprO1,
        placement=device)
    logger = neural_factory.logger

    if args.local_rank is not None:
        logger.info('Doing ALL GPU')

    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)

    vocab = load_vocab(args.vocab_file)

    sample_rate = jasper_params['sample_rate']

    eval_datasets = args.eval_datasets

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    eval_dl_params["normalize_transcripts"] = False
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=eval_datasets,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=batch_size,
        **eval_dl_params)

    n = len(data_layer)
    logger.info('Evaluating {0} examples'.format(n))

    data_preprocessor = nemo_asr.AudioPreprocessing(
        sample_rate=sample_rate,
        **jasper_params["AudioPreprocessing"])
    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioPreprocessing"]["features"],
        **jasper_params["JasperEncoder"])
    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))
    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    if args.lm_path:
        beam_width = args.beam_width
        alpha = args.alpha
        beta = args.beta
        cutoff_prob = args.cutoff_prob
        cutoff_top_n = args.cutoff_top_n
        beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
            vocab=vocab,
            beam_width=beam_width,
            alpha=alpha,
            beta=beta,
            cutoff_prob=cutoff_prob,
            cutoff_top_n=cutoff_top_n,
            lm_path=args.lm_path,
            num_cpus=max(os.cpu_count(), 1))

    logger.info('================================')
    logger.info(
        f"Number of parameters in encoder: {jasper_encoder.num_weights}")
    logger.info(
        f"Number of parameters in decoder: {jasper_decoder.num_weights}")
    logger.info(
        f"Total number of parameters in decoder: "
        f"{jasper_decoder.num_weights + jasper_encoder.num_weights}")
    logger.info('================================')

    audio_signal_e1, a_sig_length_e1, transcript_e1, transcript_len_e1 = \
        data_layer()
    processed_signal_e1, p_length_e1 = data_preprocessor(
        input_signal=audio_signal_e1,
        length=a_sig_length_e1)
    encoded_e1, encoded_len_e1 = jasper_encoder(
        audio_signal=processed_signal_e1,
        length=p_length_e1)
    log_probs_e1 = jasper_decoder(encoder_output=encoded_e1)
    predictions_e1 = greedy_decoder(log_probs=log_probs_e1)

    eval_tensors = [log_probs_e1, predictions_e1,
                    transcript_e1, transcript_len_e1, encoded_len_e1]

    if args.lm_path:
        beam_predictions_e1 = beam_search_with_lm(
            log_probs=log_probs_e1, log_probs_length=encoded_len_e1)
        eval_tensors.append(beam_predictions_e1)

    evaluated_tensors = neural_factory.infer(
        tensors=eval_tensors,
        checkpoint_dir=load_dir,
    )

    greedy_hypotheses = post_process_predictions(evaluated_tensors[1], vocab)
    references = post_process_transcripts(
        evaluated_tensors[2], evaluated_tensors[3], vocab)
    cer = word_error_rate(hypotheses=greedy_hypotheses,
                          references=references,
                          use_cer=True)
    logger.info("Greedy CER {:.2f}%".format(cer * 100))

    if args.lm_path:
        beam_hypotheses = []
        # Over mini-batch
        for i in evaluated_tensors[-1]:
            # Over samples
            for j in i:
                beam_hypotheses.append(j[0][1])

        cer = word_error_rate(
            hypotheses=beam_hypotheses, references=references, use_cer=True)
        logger.info("Beam CER {:.2f}".format(cer * 100))

    if args.save_logprob:
        # Convert logits to list of numpy arrays
        logprob = []
        for i, batch in enumerate(evaluated_tensors[0]):
            for j in range(batch.shape[0]):
                logprob.append(
                    batch[j][:evaluated_tensors[4][i][j], :].cpu().numpy())
        with open(args.save_logprob, 'wb') as f:
            pickle.dump(logprob, f, protocol=pickle.HIGHEST_PROTOCOL)
Ejemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser(parents=[nm_argparse.NemoArgParser()],
                                     description='AN4 ASR',
                                     conflict_handler='resolve')

    # Overwrite default args
    parser.add_argument("--train_dataset",
                        type=str,
                        help="training dataset path")
    parser.add_argument("--eval_datasets",
                        type=str,
                        nargs=1,
                        help="validation dataset path")

    # Create new args
    parser.add_argument("--lm", default="./an4-lm.3gram.binary", type=str)
    parser.add_argument("--test_after_training", action='store_true')
    parser.add_argument("--momentum", type=float)
    parser.add_argument("--beta1", default=0.95, type=float)
    parser.add_argument("--beta2", default=0.25, type=float)
    parser.set_defaults(
        model_config="./configs/jasper_an4.yaml",
        train_dataset="/home/mrjenkins/TestData/an4_dataset/an4_train.json",
        eval_datasets="/home/mrjenkins/TestData/an4_dataset/an4_val.json",
        work_dir="./tmp",
        checkpoint_dir="./tmp",
        optimizer="novograd",
        num_epochs=50,
        batch_size=32,
        eval_batch_size=16,
        lr=0.02,
        weight_decay=0.005,
        checkpoint_save_freq=1000,
        eval_freq=100,
        amp_opt_level="O1")

    args = parser.parse_args()
    betas = (args.beta1, args.beta2)

    wer_thr = 0.20
    beam_wer_thr = 0.15

    nf = nemo.core.NeuralModuleFactory(local_rank=args.local_rank,
                                       optimization_level=args.amp_opt_level,
                                       random_seed=0,
                                       log_dir=args.work_dir,
                                       checkpoint_dir=args.checkpoint_dir,
                                       create_tb_writer=True,
                                       cudnn_benchmark=args.cudnn_benchmark)
    tb_writer = nf.tb_writer
    checkpoint_dir = nf.checkpoint_dir
    args.checkpoint_dir = nf.checkpoint_dir

    # Load model definition
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)

    vocab = jasper_params['labels']
    sample_rate = jasper_params['sample_rate']

    # build train and eval model
    train_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    train_dl_params.update(jasper_params["AudioToTextDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]

    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.train_dataset,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.batch_size,
        **train_dl_params)

    num_samples = len(data_layer)
    total_steps = int(num_samples * args.num_epochs / args.batch_size)
    print("Train samples=", num_samples, "num_steps=", total_steps)

    data_preprocessor = nemo_asr.AudioPreprocessing(
        sample_rate=sample_rate, **jasper_params["AudioPreprocessing"])

    # data_augmentation = nemo_asr.SpectrogramAugmentation(
    #     **jasper_params['SpectrogramAugmentation']
    # )

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]

    data_layer_eval = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.eval_datasets,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.eval_batch_size,
        **eval_dl_params)

    num_samples = len(data_layer_eval)
    nf.logger.info(f"Eval samples={num_samples}")

    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioPreprocessing"]["features"],
        **jasper_params["JasperEncoder"])

    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))

    ctc_loss = nemo_asr.CTCLossNM(num_classes=len(vocab))

    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    # Training model
    audio, audio_len, transcript, transcript_len = data_layer()
    processed, processed_len = data_preprocessor(input_signal=audio,
                                                 length=audio_len)
    encoded, encoded_len = jasper_encoder(audio_signal=processed,
                                          length=processed_len)
    log_probs = jasper_decoder(encoder_output=encoded)
    predictions = greedy_decoder(log_probs=log_probs)
    loss = ctc_loss(log_probs=log_probs,
                    targets=transcript,
                    input_length=encoded_len,
                    target_length=transcript_len)

    # Evaluation model
    audio_e, audio_len_e, transcript_e, transcript_len_e = data_layer_eval()
    processed_e, processed_len_e = data_preprocessor(input_signal=audio_e,
                                                     length=audio_len_e)
    encoded_e, encoded_len_e = jasper_encoder(audio_signal=processed_e,
                                              length=processed_len_e)
    log_probs_e = jasper_decoder(encoder_output=encoded_e)
    predictions_e = greedy_decoder(log_probs=log_probs_e)
    loss_e = ctc_loss(log_probs=log_probs_e,
                      targets=transcript_e,
                      input_length=encoded_len_e,
                      target_length=transcript_len_e)
    nf.logger.info("Num of params in encoder: {0}".format(
        jasper_encoder.num_weights))

    # Callbacks to print info to console and Tensorboard
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss, predictions, transcript, transcript_len],
        print_func=lambda x: monitor_asr_train_progress(x, labels=vocab),
        get_tb_values=lambda x: [["loss", x[0]]],
        tb_writer=tb_writer,
    )

    checkpointer_callback = nemo.core.CheckpointCallback(
        folder=checkpoint_dir, step_freq=args.checkpoint_save_freq)

    eval_tensors = [loss_e, predictions_e, transcript_e, transcript_len_e]
    eval_callback = nemo.core.EvaluatorCallback(
        eval_tensors=eval_tensors,
        user_iter_callback=lambda x, y: process_evaluation_batch(
            x, y, labels=vocab),
        user_epochs_done_callback=process_evaluation_epoch,
        eval_step=args.eval_freq,
        tb_writer=tb_writer)

    nf.train(tensors_to_optimize=[loss],
             callbacks=[train_callback, eval_callback, checkpointer_callback],
             optimizer=args.optimizer,
             lr_policy=CosineAnnealing(total_steps=total_steps),
             optimization_params={
                 "num_epochs": args.num_epochs,
                 "max_steps": args.max_steps,
                 "lr": args.lr,
                 "momentum": args.momentum,
                 "betas": betas,
                 "weight_decay": args.weight_decay,
                 "grad_norm_clip": None
             },
             batches_per_step=args.iter_per_step)

    if args.test_after_training:
        # Create BeamSearch NM
        beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
            vocab=vocab,
            beam_width=64,
            alpha=2.,
            beta=1.5,
            lm_path=args.lm,
            num_cpus=max(os.cpu_count(), 1))
        beam_predictions = beam_search_with_lm(log_probs=log_probs_e,
                                               log_probs_length=encoded_len_e)
        eval_tensors.append(beam_predictions)

        evaluated_tensors = nf.infer(eval_tensors)
        greedy_hypotheses = post_process_predictions(evaluated_tensors[1],
                                                     vocab)
        references = post_process_transcripts(evaluated_tensors[2],
                                              evaluated_tensors[3], vocab)
        wer = word_error_rate(hypotheses=greedy_hypotheses,
                              references=references)
        nf.logger.info("Greedy WER: {:.2f}".format(wer * 100))
        assert wer <= wer_thr, (
            "Final eval greedy WER {:.2f}% > than {:.2f}%".format(
                wer * 100, wer_thr * 100))

        beam_hypotheses = []
        # Over mini-batch
        for i in evaluated_tensors[-1]:
            # Over samples
            for j in i:
                beam_hypotheses.append(j[0][1])

        beam_wer = word_error_rate(hypotheses=beam_hypotheses,
                                   references=references)
        nf.logger.info("Beam WER {:.2f}%".format(beam_wer * 100))
        assert beam_wer <= beam_wer_thr, (
            "Final eval beam WER {:.2f}%  > than {:.2f}%".format(
                beam_wer * 100, beam_wer_thr * 100))
        assert beam_wer <= wer, ("Final eval beam WER > than the greedy WER.")

        # Reload model weights and train for extra 10 epochs
        checkpointer_callback = nemo.core.CheckpointCallback(
            folder=checkpoint_dir,
            step_freq=args.checkpoint_save_freq,
            force_load=True)

        nf.reset_trainer()
        nf.train(tensors_to_optimize=[loss],
                 callbacks=[train_callback, checkpointer_callback],
                 optimizer=args.optimizer,
                 optimization_params={
                     "num_epochs": args.num_epochs + 10,
                     "lr": args.lr,
                     "momentum": args.momentum,
                     "betas": betas,
                     "weight_decay": args.weight_decay,
                     "grad_norm_clip": None
                 },
                 reset=True)

        evaluated_tensors = nf.infer(eval_tensors[:-1])
        greedy_hypotheses = post_process_predictions(evaluated_tensors[1],
                                                     vocab)
        references = post_process_transcripts(evaluated_tensors[2],
                                              evaluated_tensors[3], vocab)
        wer_new = word_error_rate(hypotheses=greedy_hypotheses,
                                  references=references)
        nf.logger.info("New greedy WER: {:.2f}%".format(wer_new * 100))
        assert wer_new <= wer * 1.1, (
            f"Fine tuning: new WER {wer * 100:.2f}% > than the previous WER "
            f"{wer_new * 100:.2f}%")
def main():
    parser = argparse.ArgumentParser(description='Jasper')
    parser.add_argument("--local_rank", default=None, type=int)
    parser.add_argument("--batch_size", default=32, type=int)
    parser.add_argument("--model_config", type=str, required=True)
    parser.add_argument("--eval_datasets", type=str, required=True)
    parser.add_argument("--load_dir", type=str, required=True)
    parser.add_argument("--save_logprob", default=None, type=str)
    parser.add_argument("--lm_path", default=None, type=str)
    parser.add_argument('--alpha',
                        default=2.,
                        type=float,
                        help='value of LM weight',
                        required=False)
    parser.add_argument(
        '--alpha_max',
        type=float,
        help='maximum value of LM weight (for a grid search in \'eval\' mode)',
        required=False)
    parser.add_argument('--alpha_step',
                        type=float,
                        help='step for LM weight\'s tuning in \'eval\' mode',
                        required=False,
                        default=0.1)
    parser.add_argument('--beta',
                        default=1.5,
                        type=float,
                        help='value of word count weight',
                        required=False)
    parser.add_argument(
        '--beta_max',
        type=float,
        help='maximum value of word count weight (for a grid search in \
          \'eval\' mode',
        required=False)
    parser.add_argument(
        '--beta_step',
        type=float,
        help='step for word count weight\'s tuning in \'eval\' mode',
        required=False,
        default=0.1)
    parser.add_argument("--beam_width", default=128, type=int)

    args = parser.parse_args()
    batch_size = args.batch_size
    load_dir = args.load_dir

    if args.local_rank is not None:
        if args.lm_path:
            raise NotImplementedError(
                "Beam search decoder with LM does not currently support "
                "evaluation on multi-gpu.")
        device = nemo.core.DeviceType.AllGpu
    else:
        device = nemo.core.DeviceType.GPU

    # Instantiate Neural Factory with supported backend
    neural_factory = nemo.core.NeuralModuleFactory(
        backend=nemo.core.Backend.PyTorch,
        local_rank=args.local_rank,
        optimization_level=nemo.core.Optimization.mxprO1,
        placement=device)
    logger = neural_factory.logger

    if args.local_rank is not None:
        logger.info('Doing ALL GPU')

    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        jasper_params = yaml.load(f)
    vocab = jasper_params['labels']
    sample_rate = jasper_params['sample_rate']

    eval_datasets = args.eval_datasets

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]
    data_layer = nemo_asr.AudioToTextDataLayer(manifest_filepath=eval_datasets,
                                               sample_rate=sample_rate,
                                               labels=vocab,
                                               batch_size=batch_size,
                                               **eval_dl_params)

    N = len(data_layer)
    logger.info('Evaluating {0} examples'.format(N))

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate,
        **jasper_params["AudioToMelSpectrogramPreprocessor"])
    jasper_encoder = nemo_asr.JasperEncoder(
        feat_in=jasper_params["AudioToMelSpectrogramPreprocessor"]["features"],
        **jasper_params["JasperEncoder"])
    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))
    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    logger.info('================================')
    logger.info(
        f"Number of parameters in encoder: {jasper_encoder.num_weights}")
    logger.info(
        f"Number of parameters in decoder: {jasper_decoder.num_weights}")
    logger.info(f"Total number of parameters in decoder: "
                f"{jasper_decoder.num_weights + jasper_encoder.num_weights}")
    logger.info('================================')

    audio_signal_e1, a_sig_length_e1, transcript_e1, transcript_len_e1 =\
        data_layer()
    processed_signal_e1, p_length_e1 = data_preprocessor(
        input_signal=audio_signal_e1, length=a_sig_length_e1)
    encoded_e1, encoded_len_e1 = jasper_encoder(
        audio_signal=processed_signal_e1, length=p_length_e1)
    log_probs_e1 = jasper_decoder(encoder_output=encoded_e1)
    predictions_e1 = greedy_decoder(log_probs=log_probs_e1)

    eval_tensors = [
        log_probs_e1, predictions_e1, transcript_e1, transcript_len_e1,
        encoded_len_e1
    ]

    evaluated_tensors = neural_factory.infer(tensors=eval_tensors,
                                             checkpoint_dir=load_dir,
                                             cache=True)

    greedy_hypotheses = post_process_predictions(evaluated_tensors[1], vocab)
    references = post_process_transcripts(evaluated_tensors[2],
                                          evaluated_tensors[3], vocab)
    wer = word_error_rate(hypotheses=greedy_hypotheses, references=references)
    logger.info("Greedy WER {:.2f}%".format(wer * 100))

    if args.lm_path:
        if args.alpha_max is None:
            args.alpha_max = args.alpha
        # include alpha_max in tuning range
        args.alpha_max += args.alpha_step / 10.0

        if args.beta_max is None:
            args.beta_max = args.beta
        # include beta_max in tuning range
        args.beta_max += args.beta_step / 10.0

        beam_wers = []

        for alpha in np.arange(args.alpha, args.alpha_max, args.alpha_step):
            for beta in np.arange(args.beta, args.beta_max, args.beta_step):
                logger.info('================================')
                logger.info(f'Infering with (alpha, beta): ({alpha}, {beta})')
                beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
                    vocab=vocab,
                    beam_width=args.beam_width,
                    alpha=alpha,
                    beta=beta,
                    lm_path=args.lm_path,
                    num_cpus=max(os.cpu_count(), 1))
                beam_predictions_e1 = beam_search_with_lm(
                    log_probs=log_probs_e1, log_probs_length=encoded_len_e1)

                evaluated_tensors = neural_factory.infer(
                    tensors=[beam_predictions_e1],
                    use_cache=True,
                    verbose=False)

                beam_hypotheses = []
                # Over mini-batch
                for i in evaluated_tensors[-1]:
                    # Over samples
                    for j in i:
                        beam_hypotheses.append(j[0][1])

                wer = word_error_rate(hypotheses=beam_hypotheses,
                                      references=references)
                logger.info("Beam WER {:.2f}%".format(wer * 100))
                beam_wers.append(((alpha, beta), wer * 100))

        logger.info('Beam WER for (alpha, beta)')
        logger.info('================================')
        logger.info('\n' + '\n'.join([str(e) for e in beam_wers]))
        logger.info('================================')
        best_beam_wer = min(beam_wers, key=lambda x: x[1])
        logger.info('Best (alpha, beta): '
                    f'{best_beam_wer[0]}, '
                    f'WER: {best_beam_wer[1]:.2f}%')
Ejemplo n.º 7
0
def create_dags(jasper_params, args, nf):
    vocab = jasper_params['labels']

    # build train and eval model
    train_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    train_dl_params.update(jasper_params["AudioToTextDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]

    data_layer = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.train_dataset,
        labels=vocab,
        batch_size=args.batch_size,
        **train_dl_params)

    num_samples = len(data_layer)
    steps_per_epoch = math.ceil(
        num_samples / (args.batch_size * args.iter_per_step * nf.world_size))
    total_steps = steps_per_epoch * args.num_epochs
    print("Train samples=", num_samples, "num_steps=", total_steps)

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        **jasper_params["AudioToMelSpectrogramPreprocessor"])

    # data_augmentation = nemo_asr.SpectrogramAugmentation(
    #     **jasper_params['SpectrogramAugmentation']
    # )

    eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
    eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]

    data_layer_eval = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.eval_datasets,
        labels=vocab,
        batch_size=args.eval_batch_size,
        **eval_dl_params)

    num_samples = len(data_layer_eval)
    nemo.logging.info(f"Eval samples={num_samples}")

    jasper_encoder = nemo_asr.JasperEncoder(**jasper_params["JasperEncoder"])

    jasper_decoder = nemo_asr.JasperDecoderForCTC(
        num_classes=len(vocab), **jasper_params["JasperDecoderForCTC"])

    ctc_loss = nemo_asr.CTCLossNM(num_classes=len(vocab))

    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    # Training model
    audio, audio_len, transcript, transcript_len = data_layer()
    processed, processed_len = data_preprocessor(input_signal=audio,
                                                 length=audio_len)
    encoded, encoded_len = jasper_encoder(audio_signal=processed,
                                          length=processed_len)
    log_probs = jasper_decoder(encoder_output=encoded)
    predictions = greedy_decoder(log_probs=log_probs)
    loss = ctc_loss(log_probs=log_probs,
                    targets=transcript,
                    input_length=encoded_len,
                    target_length=transcript_len)

    # Evaluation model
    audio_e, audio_len_e, transcript_e, transcript_len_e = data_layer_eval()
    processed_e, processed_len_e = data_preprocessor(input_signal=audio_e,
                                                     length=audio_len_e)
    encoded_e, encoded_len_e = jasper_encoder(audio_signal=processed_e,
                                              length=processed_len_e)
    log_probs_e = jasper_decoder(encoder_output=encoded_e)
    predictions_e = greedy_decoder(log_probs=log_probs_e)
    loss_e = ctc_loss(log_probs=log_probs_e,
                      targets=transcript_e,
                      input_length=encoded_len_e,
                      target_length=transcript_len_e)
    nemo.logging.info("Num of params in encoder: {0}".format(
        jasper_encoder.num_weights))

    # Callbacks to print info to console and Tensorboard
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss, predictions, transcript, transcript_len],
        print_func=partial(monitor_asr_train_progress, labels=vocab),
        get_tb_values=lambda x: [["loss", x[0]]],
        tb_writer=nf.tb_writer,
    )

    checkpointer_callback = nemo.core.CheckpointCallback(
        folder=nf.checkpoint_dir, step_freq=args.checkpoint_save_freq)

    eval_tensors = [loss_e, predictions_e, transcript_e, transcript_len_e]
    eval_callback = nemo.core.EvaluatorCallback(
        eval_tensors=eval_tensors,
        user_iter_callback=partial(process_evaluation_batch, labels=vocab),
        user_epochs_done_callback=process_evaluation_epoch,
        eval_step=args.eval_freq,
        tb_writer=nf.tb_writer)
    callbacks = [train_callback, checkpointer_callback, eval_callback]
    return (loss, eval_tensors, callbacks, total_steps, vocab, log_probs_e,
            encoded_len_e)
Ejemplo n.º 8
0
neural_factory = nemo.core.NeuralModuleFactory(
    placement=(DeviceType.GPU
               if torch.cuda.is_available() else DeviceType.CPU),
    backend=nemo.core.Backend.PyTorch)
data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
    factory=neural_factory)
jasper_encoder = nemo_asr.JasperEncoder(
    jasper=jasper_model_definition['JasperEncoder']['jasper'],
    activation=jasper_model_definition['JasperEncoder']['activation'],
    feat_in=jasper_model_definition['AudioToMelSpectrogramPreprocessor']
    ['features'])
jasper_encoder.restore_from(CHECKPOINT_ENCODER, local_rank=0)
jasper_decoder = nemo_asr.JasperDecoderForCTC(feat_in=1024,
                                              num_classes=len(labels))
jasper_decoder.restore_from(CHECKPOINT_DECODER, local_rank=0)
greedy_decoder = nemo_asr.GreedyCTCDecoder()

if ENABLE_NGRAM and os.path.isfile(LM_PATH):
    beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(vocab=labels,
                                                           beam_width=64,
                                                           alpha=2.0,
                                                           beta=1.0,
                                                           lm_path=LM_PATH,
                                                           num_cpus=max(
                                                               os.cpu_count(),
                                                               1))
else:
    print("Beam search is not enabled")

from app import routes  # noqa
if __name__ == '__main__':
Ejemplo n.º 9
0
def create_all_dags(args, neural_factory):
    '''
    creates train and eval dags as well as their callbacks
    returns train loss tensor and callbacks'''

    # parse the config files
    yaml = YAML(typ="safe")
    with open(args.model_config) as f:
        quartz_params = yaml.load(f)

    vocab = quartz_params['labels']
    sample_rate = quartz_params['sample_rate']

    # Calculate num_workers for dataloader
    total_cpus = os.cpu_count()
    cpu_per_traindl = max(int(total_cpus / neural_factory.world_size), 1)

    # create data layer for training
    train_dl_params = copy.deepcopy(quartz_params["AudioToTextDataLayer"])
    train_dl_params.update(quartz_params["AudioToTextDataLayer"]["train"])
    del train_dl_params["train"]
    del train_dl_params["eval"]
    # del train_dl_params["normalize_transcripts"]

    data_layer_train = nemo_asr.AudioToTextDataLayer(
        manifest_filepath=args.train_dataset,
        sample_rate=sample_rate,
        labels=vocab,
        batch_size=args.batch_size,
        num_workers=cpu_per_traindl,
        **train_dl_params,
        # normalize_transcripts=False
    )

    N = len(data_layer_train)
    steps_per_epoch = int(
        N / (args.batch_size * args.iter_per_step * args.num_gpus))

    # create separate data layers for eval
    # we need separate eval dags for separate eval datasets
    # but all other modules in these dags will be shared

    eval_dl_params = copy.deepcopy(quartz_params["AudioToTextDataLayer"])
    eval_dl_params.update(quartz_params["AudioToTextDataLayer"]["eval"])
    del eval_dl_params["train"]
    del eval_dl_params["eval"]

    data_layers_eval = []
    if args.eval_datasets:
        for eval_dataset in args.eval_datasets:
            data_layer_eval = nemo_asr.AudioToTextDataLayer(
                manifest_filepath=eval_dataset,
                sample_rate=sample_rate,
                labels=vocab,
                batch_size=args.eval_batch_size,
                num_workers=cpu_per_traindl,
                **eval_dl_params,
            )

            data_layers_eval.append(data_layer_eval)
    else:
        nemo.logging.warning("There were no val datasets passed")

    # create shared modules

    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        sample_rate=sample_rate,
        **quartz_params["AudioToMelSpectrogramPreprocessor"])

    # (QuartzNet uses the Jasper baseline encoder and decoder)
    encoder = nemo_asr.JasperEncoder(
        feat_in=quartz_params["AudioToMelSpectrogramPreprocessor"]["features"],
        **quartz_params["JasperEncoder"])

    decoder = nemo_asr.JasperDecoderForCTC(
        feat_in=quartz_params["JasperEncoder"]["jasper"][-1]["filters"],
        num_classes=len(vocab))

    ctc_loss = nemo_asr.CTCLossNM(num_classes=len(vocab))

    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    # create augmentation modules (only used for training) if their configs
    # are present

    multiply_batch_config = quartz_params.get('MultiplyBatch', None)
    if multiply_batch_config:
        multiply_batch = nemo_asr.MultiplyBatch(**multiply_batch_config)

    spectr_augment_config = quartz_params.get('SpectrogramAugmentation', None)
    if spectr_augment_config:
        data_spectr_augmentation = nemo_asr.SpectrogramAugmentation(
            **spectr_augment_config)

    # assemble train DAG

    audio_signal_t, a_sig_length_t, \
        transcript_t, transcript_len_t = data_layer_train()

    processed_signal_t, p_length_t = data_preprocessor(
        input_signal=audio_signal_t, length=a_sig_length_t)

    if multiply_batch_config:
        processed_signal_t, p_length_t, transcript_t, transcript_len_t = \
            multiply_batch(
                in_x=processed_signal_t, in_x_len=p_length_t,
                in_y=transcript_t,
                in_y_len=transcript_len_t)

    if spectr_augment_config:
        processed_signal_t = data_spectr_augmentation(
            input_spec=processed_signal_t)

    encoded_t, encoded_len_t = encoder(audio_signal=processed_signal_t,
                                       length=p_length_t)
    log_probs_t = decoder(encoder_output=encoded_t)
    predictions_t = greedy_decoder(log_probs=log_probs_t)
    loss_t = ctc_loss(log_probs=log_probs_t,
                      targets=transcript_t,
                      input_length=encoded_len_t,
                      target_length=transcript_len_t)

    # create train callbacks
    train_callback = nemo.core.SimpleLossLoggerCallback(
        tensors=[loss_t, predictions_t, transcript_t, transcript_len_t],
        print_func=partial(monitor_asr_train_progress, labels=vocab),
        get_tb_values=lambda x: [["loss", x[0]]],
        tb_writer=neural_factory.tb_writer)

    callbacks = [train_callback]

    if args.checkpoint_dir or args.load_dir:
        chpt_callback = nemo.core.CheckpointCallback(
            folder=args.checkpoint_dir,
            load_from_folder=args.load_dir,
            step_freq=args.checkpoint_save_freq)

        callbacks.append(chpt_callback)

    # assemble eval DAGs
    for i, eval_dl in enumerate(data_layers_eval):

        audio_signal_e, a_sig_length_e, transcript_e, transcript_len_e = \
            eval_dl()
        processed_signal_e, p_length_e = data_preprocessor(
            input_signal=audio_signal_e, length=a_sig_length_e)
        encoded_e, encoded_len_e = encoder(audio_signal=processed_signal_e,
                                           length=p_length_e)
        log_probs_e = decoder(encoder_output=encoded_e)
        predictions_e = greedy_decoder(log_probs=log_probs_e)
        loss_e = ctc_loss(log_probs=log_probs_e,
                          targets=transcript_e,
                          input_length=encoded_len_e,
                          target_length=transcript_len_e)

        # create corresponding eval callback
        tagname = os.path.basename(args.eval_datasets[i]).split(".")[0]

        eval_callback = nemo.core.EvaluatorCallback(
            eval_tensors=[
                loss_e, predictions_e, transcript_e, transcript_len_e
            ],
            user_iter_callback=partial(process_evaluation_batch, labels=vocab),
            user_epochs_done_callback=partial(process_evaluation_epoch,
                                              tag=tagname),
            eval_step=args.eval_freq,
            tb_writer=neural_factory.tb_writer)

        callbacks.append(eval_callback)

    return loss_t, callbacks, steps_per_epoch
Ejemplo n.º 10
0
    def test_simple_dags(self):
        # module instantiation
        with open("tests/data/jasper_smaller.yaml") as file:
            jasper_model_definition = self.yaml.load(file)
        labels = jasper_model_definition['labels']

        data_layer = nemo_asr.AudioToTextDataLayer(
            manifest_filepath=self.manifest_filepath,
            labels=labels,
            batch_size=4)
        data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
            **jasper_model_definition['AudioToMelSpectrogramPreprocessor'])
        jasper_encoder = nemo_asr.JasperEncoder(
            feat_in=jasper_model_definition[
                'AudioToMelSpectrogramPreprocessor']['features'],
            **jasper_model_definition['JasperEncoder'])
        jasper_decoder = nemo_asr.JasperDecoderForCTC(feat_in=1024,
                                                      num_classes=len(labels))
        ctc_loss = nemo_asr.CTCLossNM(num_classes=len(labels))
        greedy_decoder = nemo_asr.GreedyCTCDecoder()

        # DAG definition
        audio_signal, audio_signal_len, transcript, transcript_len = \
            data_layer()
        processed_signal, processed_signal_len = data_preprocessor(
            input_signal=audio_signal, length=audio_signal_len)

        spec_augment = nemo_asr.SpectrogramAugmentation(rect_masks=5)
        aug_signal = spec_augment(input_spec=processed_signal)

        encoded, encoded_len = jasper_encoder(audio_signal=aug_signal,
                                              length=processed_signal_len)
        log_probs = jasper_decoder(encoder_output=encoded)
        predictions = greedy_decoder(log_probs=log_probs)
        loss = ctc_loss(log_probs=log_probs,
                        targets=transcript,
                        input_length=encoded_len,
                        target_length=transcript_len)

        def wrong():
            with open("tests/data/jasper_smaller.yaml") as file:
                jasper_config = self.yaml.load(file)
            labels = jasper_config['labels']

            data_layer = nemo_asr.AudioToTextDataLayer(
                manifest_filepath=self.manifest_filepath,
                labels=labels,
                batch_size=4)
            data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
                **jasper_config['AudioToMelSpectrogramPreprocessor'])
            jasper_encoder = nemo_asr.JasperEncoder(
                feat_in=jasper_config['AudioToMelSpectrogramPreprocessor']
                ['features'],
                **jasper_config['JasperEncoder'])
            jasper_decoder = nemo_asr.JasperDecoderForCTC(
                feat_in=1024, num_classes=len(labels))
            # DAG definition
            audio_signal, audio_signal_len, transcript, transcript_len = \
                data_layer()
            processed_signal, processed_signal_len = data_preprocessor(
                input_signal=audio_signal, length=audio_signal_len)

            spec_augment = nemo_asr.SpectrogramAugmentation(rect_masks=5)
            aug_signal = spec_augment(input_spec=processed_signal)

            encoded, encoded_len = jasper_encoder(audio_signal=aug_signal,
                                                  length=processed_signal_len)
            log_probs = jasper_decoder(encoder_output=processed_signal)

        self.assertRaises(NeuralPortNmTensorMismatchError, wrong)
Ejemplo n.º 11
0
def offline_inference(config, encoder, decoder, audio_file):
  MODEL_YAML = config
  CHECKPOINT_ENCODER = encoder
  CHECKPOINT_DECODER = decoder
  sample_rate, signal = wave.read(audio_file)

  # get labels (vocab)
  yaml = YAML(typ="safe")
  with open(MODEL_YAML) as f:
    jasper_model_definition = yaml.load(f)
  labels = jasper_model_definition['labels']

  # build neural factory and neural modules
  neural_factory = nemo.core.NeuralModuleFactory(
    placement=nemo.core.DeviceType.GPU,
    backend=nemo.core.Backend.PyTorch)
  data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
    factory=neural_factory,
    **jasper_model_definition["AudioToMelSpectrogramPreprocessor"])

  jasper_encoder = nemo_asr.JasperEncoder(
    feat_in=jasper_model_definition["AudioToMelSpectrogramPreprocessor"]["features"],
    **jasper_model_definition["JasperEncoder"])

  jasper_decoder = nemo_asr.JasperDecoderForCTC(
    feat_in=jasper_model_definition["JasperEncoder"]["jasper"][-1]["filters"],
    num_classes=len(labels))

  greedy_decoder = nemo_asr.GreedyCTCDecoder()

  # load model
  jasper_encoder.restore_from(CHECKPOINT_ENCODER)
  jasper_decoder.restore_from(CHECKPOINT_DECODER)

  # AudioDataLayer
  class AudioDataLayer(DataLayerNM):
    @staticmethod
    def create_ports():
      input_ports = {}
      output_ports = {
        "audio_signal": NeuralType({0: AxisType(BatchTag),
                                    1: AxisType(TimeTag)}),

        "a_sig_length": NeuralType({0: AxisType(BatchTag)}),
      }
      return input_ports, output_ports

    def __init__(self, **kwargs):
      DataLayerNM.__init__(self, **kwargs)
      self.output_enable = False

    def __iter__(self):
      return self

    def __next__(self):
      if not self.output_enable:
        raise StopIteration
      self.output_enable = False
      return torch.as_tensor(self.signal, dtype=torch.float32), \
            torch.as_tensor(self.signal_shape, dtype=torch.int64)

    def set_signal(self, signal):
      self.signal = np.reshape(signal.astype(np.float32)/32768., [1, -1])
      self.signal_shape = np.expand_dims(self.signal.size, 0).astype(np.int64)
      self.output_enable = True

    def __len__(self):
      return 1

    @property
    def dataset(self):
      return None

    @property
    def data_iterator(self):
      return self

  # Instantiate necessary neural modules
  data_layer = AudioDataLayer()

  # Define inference DAG
  audio_signal, audio_signal_len = data_layer()
  processed_signal, processed_signal_len = data_preprocessor(
    input_signal=audio_signal,
    length=audio_signal_len)
  encoded, encoded_len = jasper_encoder(audio_signal=processed_signal,
                                        length=processed_signal_len)
  log_probs = jasper_decoder(encoder_output=encoded)
  predictions = greedy_decoder(log_probs=log_probs)

  # audio inference
  data_layer.set_signal(signal)

  tensors = neural_factory.infer([
    audio_signal,
    processed_signal,
    encoded,
    log_probs,
    predictions], verbose=False)

  # results
  audio = tensors[0][0][0].cpu().numpy()
  features = tensors[1][0][0].cpu().numpy()
  encoded_features = tensors[2][0][0].cpu().numpy(),
  probs = tensors[3][0][0].cpu().numpy()
  preds = tensors[4][0]
  transcript = post_process_predictions([preds], labels)

  return transcript, audio, features, encoded_features, probs, preds
Ejemplo n.º 12
0
def convert(request):
    """
    ** Create new sound recognation object by convert audio to text .


    ** Use Case Exemple of Post:

                {

                    "audio":"base64 format",

                }



    """
    import json
    from ruamel.yaml import YAML
    import nemo
    import nemo_asr
    import IPython.display as ipd
    MODEL_YAML = "/home/docker/app/ai_models/quartznet15x5.yaml"
    CHECKPOINT_ENCODER = "/home/docker/app/ai_models/JasperEncoder-STEP-243800.pt"
    CHECKPOINT_DECODER = "/home/docker/app/ai_models/JasperDecoderForCTC-STEP-243800.pt"
    ENABLE_NGRAM = False
    yaml = YAML(typ="safe")
    with open(MODEL_YAML) as f:
        jasper_model_definition = yaml.load(f)
    labels = jasper_model_definition['labels']
    neural_factory = nemo.core.NeuralModuleFactory(
        placement=nemo.core.DeviceType.CPU, backend=nemo.core.Backend.PyTorch)
    data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
        factory=neural_factory)
    jasper_encoder = nemo_asr.JasperEncoder(
        jasper=jasper_model_definition['JasperEncoder']['jasper'],
        activation=jasper_model_definition['JasperEncoder']['activation'],
        feat_in=jasper_model_definition['AudioToMelSpectrogramPreprocessor']
        ['features'])
    jasper_encoder.restore_from(CHECKPOINT_ENCODER, local_rank=0)
    jasper_decoder = nemo_asr.JasperDecoderForCTC(feat_in=1024,
                                                  num_classes=len(labels))
    jasper_decoder.restore_from(CHECKPOINT_DECODER, local_rank=0)
    greedy_decoder = nemo_asr.GreedyCTCDecoder()

    def wav_to_text(manifest, greedy=True):
        from ruamel.yaml import YAML
        yaml = YAML(typ="safe")
        with open(MODEL_YAML) as f:
            jasper_model_definition = yaml.load(f)
        labels = jasper_model_definition['labels']
        data_layer = nemo_asr.AudioToTextDataLayer(shuffle=False,
                                                   manifest_filepath=manifest,
                                                   labels=labels,
                                                   batch_size=1)
        audio_signal, audio_signal_len, _, _ = data_layer()
        processed_signal, processed_signal_len = data_preprocessor(
            input_signal=audio_signal, length=audio_signal_len)
        encoded, encoded_len = jasper_encoder(audio_signal=processed_signal,
                                              length=processed_signal_len)
        log_probs = jasper_decoder(encoder_output=encoded)
        predictions = greedy_decoder(log_probs=log_probs)

        if ENABLE_NGRAM:
            print('Running with beam search')
            beam_predictions = beam_search_with_lm(
                log_probs=log_probs, log_probs_length=encoded_len)
            eval_tensors = [beam_predictions]

        if greedy:
            eval_tensors = [predictions]

        tensors = neural_factory.infer(tensors=eval_tensors)
        if greedy:
            from nemo_asr.helpers import post_process_predictions
            prediction = post_process_predictions(tensors[0], labels)
        else:
            prediction = tensors[0][0][0][0][1]
        return prediction

    def create_manifest(file_path):
        # create manifest
        manifest = dict()
        manifest['audio_filepath'] = file_path
        manifest['duration'] = 18000
        manifest['text'] = 'todo'
        with open(file_path + ".json", 'w') as fout:
            fout.write(json.dumps(manifest))
        return file_path + ".json"

    data = request.FILES['audio']
    path = "media/" + data.name
    audio = Song.objects.create(audio_file=data)
    transcription = wav_to_text(create_manifest(audio.audio_file.path))

    return Response({'Output': transcription})