Ejemplo n.º 1
0
def init_from_keywords(keywordstring, meta={}, IsReload=False, **context):
    if not IsReload:
        modelspec = init.from_keywords(keyword_string=keywordstring, meta=meta)

        return {'modelspecs': [modelspec]}
    else:
        return {}
Ejemplo n.º 2
0
def build_toy_combined_cell(base, amplitude, shift, kappa, u, tau):
    modelspec = from_keywords(combined.split('_')[1])
    modelspec = _set_LN_phi(modelspec)
    stp_idx = find_module('stp', modelspec)
    modelspec[stp_idx]['phi'] = {'u': u, 'tau': tau}

    return _set_gc_phi(modelspec, base, amplitude, shift, kappa)
Ejemplo n.º 3
0
def build_toy_stp_cell(u, tau):
    if not isinstance(u, np.ndarray):
        u = np.array(u)
    if not isinstance(tau, np.ndarray):
        tau = np.array(tau)
    modelspec = from_keywords(stp.split('_')[1])
    modelspec = _set_LN_phi(modelspec)
    stp_idx = find_module('stp', modelspec)
    modelspec[stp_idx]['phi'] = {'u': u, 'tau': tau}

    return modelspec
Ejemplo n.º 4
0
def eval_tf_layer(
        data: np.ndarray,
        layer_spec: typing.Union[None, str] = None,
        state_data: np.ndarray = None,
        stop: typing.Union[None, int] = None,
        modelspec: mslib.ModelSpec = None,
        **kwargs,  # temporary until state data is implemented
) -> np.ndarray:
    """Takes in a numpy array and applies a single tf layer to it.

    :param data: The input data. Shape of (reps, time, channels).
    :param layer_spec: A layer spec for layers of a modelspec.
    :param state_data: The input state data. Shape of (reps, time, channels).
    :param stop: What layer to eval to. Non inclusive. If not passed, will evaluate the whole layer spec.
    :param modelspec: Optionally use an existing modelspec. Takes precedence over layer_spec.

    :return: The processed data.
    """
    if layer_spec is None and modelspec is None:
        raise ValueError(
            'Either of "layer_spec" or "modelspec" must be specified.')

    if modelspec is not None:
        ms = modelspec
    else:
        ms = initializers.from_keywords(layer_spec)

    layers = ms.modelspec2tf2(use_modelspec_init=True)[:stop]

    data_shape = data.shape
    state_shape = None
    if state_data is not None:
        state_shape = state_data.shape
        data = [data, state_data]

    model = modelbuilder.ModelBuilder(layers=layers).build_model(
        input_shape=data_shape, state_shape=state_shape)

    pred = model.predict(data)
    return pred
Ejemplo n.º 5
0
def fit_bgfg_model(batch, site):
    cell_df = nd.get_batch_cells(batch)
    cellid = [cell for cell in cell_df['cellid'].tolist()
              if cell[:7] == site][0]
    fs = 100

    manager = BAPHYExperiment(cellid=cellid, batch=batch)
    options = {'rasterfs': 100, 'stim': False, 'resp': True}
    rec = manager.get_recording(**options)
    newrec = ts.generate_psth_from_resp_bgfg(rec, manager)

    rec = newrec.copy()
    rec['resp'] = rec['resp'].rasterize()

    bgfg_psth_signal = rec['psth'].concatenate_channels(
        (rec['psth_bg'], rec['psth_fg']))
    bgfg_psth_signal.name = 'psth_bgfg'
    rec.add_signal(bgfg_psth_signal)

    epoch_regex = '^STIM'
    rec = nems.preprocessing.average_away_epoch_occurrences(
        rec, epoch_regex=epoch_regex)
    # mask out epochs with "null" in the name
    ep = nems.epoch.epoch_names_matching(rec['psth'].epochs, '^STIM')
    for e in ep:
        if ('null' not in e) and ('0.5' not in e):
            print(e)
            rec = rec.or_mask(e)

    est = rec.copy()
    val = rec.copy()

    outputcount = rec['psth'].shape[0]
    inputcount = outputcount * 2

    insignal = 'psth_bgfg'
    outsignal = 'psth_sp'

    modelspec_name = f'wc.{inputcount}x{outputcount}-lvl.{outputcount}'

    # record some meta data for display and saving
    meta = {
        'cellid': site,
        'batch': 1,
        'modelname': modelspec_name,
        'recording': est.name
    }
    modelspec = initializers.from_keywords(modelspec_name,
                                           meta=meta,
                                           input_name=insignal,
                                           output_name=outsignal)

    init_weights = np.eye(outputcount, outputcount)
    init_weights = np.concatenate((init_weights, init_weights), axis=1)
    modelspec[0]['phi']['coefficients'] = init_weights / 2

    # RUN AN ANALYSIS
    # GOAL: Fit your model to your data, producing the improved modelspecs.
    #       Note that: nems.analysis.* will return a list of modelspecs, sorted
    #       in descending order of how they performed on the fitter's metric.

    # then fit full nonlinear model
    fit_kwargs = {'tolerance': 1e-5, 'max_iter': 100000}
    modelspec = nems.analysis.api.fit_basic(est,
                                            modelspec,
                                            fitter=scipy_minimize,
                                            fit_kwargs=fit_kwargs)

    # GENERATE SUMMARY STATISTICS
    print('Generating summary statistics ...')

    # generate predictions
    est, val = nems.analysis.api.generate_prediction(est, val, modelspec)

    # evaluate prediction accuracy
    modelspec = nems.analysis.api.standard_correlation(est, val, modelspec)

    print("Performance: r_fit={0:.3f} r_test={1:.3f}".format(
        modelspec.meta['r_fit'][0][0], modelspec.meta['r_test'][0][0]))

    ctx = {'modelspec': modelspec, 'rec': rec, 'val': val, 'est': est}
    xfspec = []

    #import nems.gui.editors as gui
    #gui.browse_xform_fit(ctx, xfspec)

    f, ax = plt.subplots(4, 1, figsize=(12, 6))
    cellnumber = 6
    dur = 2000
    r = val.apply_mask()
    ax[0].plot(r['pred'].as_continuous()[cellnumber, :dur])
    ax[0].plot(r['psth_sp'].as_continuous()[cellnumber, :dur])
    ax[1].plot(r['psth_fg'].as_continuous()[cellnumber, :dur])
    ax[2].plot(r['psth_bg'].as_continuous()[cellnumber, :dur])
    ax[3].plot(r['mask'].as_continuous()[0, :dur])

    #plt.legend(('pred','actual','mask'))

    plt.figure()
    plt.imshow(modelspec.phi[0]['coefficients'])
    plt.colorbar()

    return modelspec, val, r


# aw = browse_recording(val, ['psth_sp','pred', 'psth_bg', 'psth_fg'], cellid='ARM017a-01-10')

#
# batch=329
# cell_df=nd.get_batch_cells(batch)
# cell_list=cell_df['cellid'].tolist()
# fs=100
#
# cell_list = [cell for cell in cell_list if cell[:3] != 'HOD']
# # cell_list = [cell for cell in cell_list if cell[:7] == 'ARM026b']
# cell_dict = {cell[0:7]:cell for cell in cell_list}
#
# rec_dict = dict()
# for site, cell in cell_dict.items():
#     manager = BAPHYExperiment(cellid=cell, batch=batch)
#     options = {'rasterfs': 100,
#                'stim': False,
#                'resp': True}
#     rec = manager.get_recording(**options)
#     rec_dict[site] = ts.generate_psth_from_resp_bgfg(rec, manager)
#
# cellid='ARM026b'
# rec=rec_dict[cellid].copy()
# rec['resp']=rec['resp'].rasterize()
#
# bgfg_psth_signal = rec['psth'].concatenate_channels((rec['psth_bg'], rec['psth_fg']))
# bgfg_psth_signal.name = 'psth_bgfg'
# rec.add_signal(bgfg_psth_signal)
#
# epoch_regex = '^STIM'
# rec = nems.preprocessing.average_away_epoch_occurrences(rec, epoch_regex=epoch_regex)
# # mask out epochs with "null" in the name
# ep = nems.epoch.epoch_names_matching(rec['psth'].epochs, '^STIM')
# for e in ep:
#     if ('null' not in e) and ('0.5' not in e):
#         print(e)
#         rec = rec.or_mask(e)
#
# est=rec.copy()
# val=rec.copy()
#
# outputcount=rec['psth'].shape[0]
# inputcount=outputcount*2
#
# insignal='psth_bgfg'
# outsignal='psth_sp'
#
# modelspec_name = f'wc.{inputcount}x{outputcount}-lvl.{outputcount}'
#
# # record some meta data for display and saving
# meta = {'cellid': cellid,
#         'batch': 1,
#         'modelname': modelspec_name,
#         'recording': est.name
#         }
# modelspec = initializers.from_keywords(modelspec_name, meta=meta, input_name=insignal, output_name=outsignal)
#
# init_weights = np.eye(outputcount,outputcount)
# init_weights = np.concatenate((init_weights,init_weights), axis=1)
# modelspec[0]['phi']['coefficients'] = init_weights/2
#
# # RUN AN ANALYSIS
#
# # GOAL: Fit your model to your data, producing the improved modelspecs.
# #       Note that: nems.analysis.* will return a list of modelspecs, sorted
# #       in descending order of how they performed on the fitter's metric.
#
# # then fit full nonlinear model
# fit_kwargs={'tolerance': 1e-5, 'max_iter': 100000}
# modelspec = nems.analysis.api.fit_basic(est, modelspec, fitter=scipy_minimize,
#                                         fit_kwargs=fit_kwargs)
#
# # GENERATE SUMMARY STATISTICS
# print('Generating summary statistics ...')
#
# # generate predictions
# est, val = nems.analysis.api.generate_prediction(est, val, modelspec)
#
# # evaluate prediction accuracy
# modelspec = nems.analysis.api.standard_correlation(est, val, modelspec)
#
# print("Performance: r_fit={0:.3f} r_test={1:.3f}".format(
#         modelspec.meta['r_fit'][0][0],
#         modelspec.meta['r_test'][0][0]))
#
# ctx = {'modelspec': modelspec, 'rec': rec, 'val': val, 'est': est}
# xfspec=[]
#
# #import nems.gui.editors as gui
# #gui.browse_xform_fit(ctx, xfspec)
#
#
# f,ax=plt.subplots(4,1, figsize=(12,6))
# cellnumber=3
# dur=2000
# r=val.apply_mask()
# ax[0].plot(r['pred'].as_continuous()[cellnumber,:dur])
# ax[0].plot(r['psth_sp'].as_continuous()[cellnumber,:dur])
# ax[1].plot(r['psth_fg'].as_continuous()[cellnumber,:dur])
# ax[2].plot(r['psth_bg'].as_continuous()[cellnumber,:dur])
# ax[3].plot(r['mask'].as_continuous()[0,:dur])
#
# #plt.legend(('pred','actual','mask'))
#
# plt.figure()
# plt.imshow(modelspec.phi[0]['coefficients'])
# plt.colorbar()
#
#
#
# aw = browse_recording(val, ['psth_sp','pred', 'psth_bg', 'psth_fg'], cellid='ARM017a-01-10')
Ejemplo n.º 6
0
def simple_modelspec_with_phi(simple_modelspec):
    ms = from_keywords('wc.18x2.g-fir.2x15-dexp.1')
    return set_mean_phi(ms)
Ejemplo n.º 7
0
def simple_modelspec():
    return from_keywords('wc.18x2.g-fir.2x15-dexp.1')
Ejemplo n.º 8
0
def init_pop_pca(est, modelspec, flip_pcs=False, IsReload=False, **context):
    """ fit up through the fir module of a population model using the pca
    signal"""

    if IsReload:
        return {}

    # preserve input modelspec. necessary?
    modelspec = copy.deepcopy(modelspec)

    ifir = find_module('filter_bank', modelspec)
    iwc = find_module('weight_channels', modelspec)

    chan_count = modelspec[ifir]['fn_kwargs']['bank_count']
    chan_per_bank = int(modelspec[iwc]['prior']['mean'][1]['mean'].shape[0] /
                        chan_count)
    rec = est.copy()
    tmodelspec = copy.deepcopy(modelspec)

    kw = [m['id'] for m in modelspec[:iwc]]

    wc = modelspec[iwc]['id'].split(".")
    wcs = wc[1].split("x")
    wcs[1] = str(chan_per_bank)
    wc[1] = "x".join(wcs)
    wc = ".".join(wc)

    fir = modelspec[ifir]['id'].split(".")
    fircore = fir[1].split("x")
    fir[1] = "x".join(fircore[:-1])
    fir = ".".join(fir)

    kw.append(wc)
    kw.append(fir)
    kw.append("lvl.1")
    keywordstring = "-".join(kw)
    keyword_lib = KeywordRegistry()
    keyword_lib.register_module(default_keywords)
    keyword_lib.register_plugins(get_setting('KEYWORD_PLUGINS'))
    if flip_pcs:
        pc_fit_count = int(np.ceil(chan_count / 2))
    else:
        pc_fit_count = chan_count
    for pc_idx in range(pc_fit_count):
        r = rec['pca'].extract_channels([rec['pca'].chans[pc_idx]])
        m = np.nanmean(r.as_continuous())
        d = np.nanstd(r.as_continuous())
        rec['resp'] = r._modified_copy((r._data - m) / d)
        tmodelspec = init.from_keywords(keyword_string=keywordstring,
                                        meta={},
                                        registry=keyword_lib,
                                        rec=rec)
        tolerance = 1e-4
        tmodelspec = init.prefit_LN(rec,
                                    tmodelspec,
                                    tolerance=tolerance,
                                    max_iter=700)

        # save results back into main modelspec
        itfir = find_module('fir', tmodelspec)
        itwc = find_module('weight_channels', tmodelspec)

        if pc_idx == 0:
            for tm, m in zip(tmodelspec[:(iwc + 1)], modelspec[:(iwc + 1)]):
                m['phi'] = tm['phi'].copy()
            modelspec[ifir]['phi'] = tmodelspec[itfir]['phi'].copy()
        else:
            for k, v in tmodelspec[iwc]['phi'].items():
                modelspec[iwc]['phi'][k] = np.concatenate(
                    (modelspec[iwc]['phi'][k], v))
            for k, v in tmodelspec[itfir]['phi'].items():
                #if k=='coefficients':
                #    v/=100 # kludge
                modelspec[ifir]['phi'][k] = np.concatenate(
                    (modelspec[ifir]['phi'][k], v))

        if flip_pcs and (pc_idx * 2 < chan_count):
            # add negative flipped version of fit
            for k, v in tmodelspec[iwc]['phi'].items():
                modelspec[iwc]['phi'][k] = np.concatenate(
                    (modelspec[iwc]['phi'][k], v))
            for k, v in tmodelspec[itfir]['phi'].items():
                #if k=='coefficients':
                #    v/=100 # kludge
                modelspec[ifir]['phi'][k] = np.concatenate(
                    (-modelspec[ifir]['phi'][k], v))

    respcount = est['resp'].shape[0]
    fit_set_all, fit_set_slice = _figure_out_mod_split(modelspec)
    cd_kwargs = {}
    cd_kwargs.update({
        'tolerance': tolerance,
        'max_iter': 100,
        'step_size': 0.1
    })

    for s in range(respcount):
        log.info('Pre-fit slice %d', s)
        modelspec = fit_population_slice(est,
                                         modelspec,
                                         slice=s,
                                         fit_set=fit_set_slice,
                                         analysis_function=analysis.fit_basic,
                                         metric=metrics.nmse,
                                         fitter=coordinate_descent,
                                         fit_kwargs=cd_kwargs)

    return {'modelspec': modelspec}
Ejemplo n.º 9
0
def build_toy_gc_cell(base, amplitude, shift, kappa):
    modelspec = from_keywords(gc.split('_')[1])
    modelspec = _set_LN_phi(modelspec)
    return _set_gc_phi(modelspec, base, amplitude, shift, kappa)
Ejemplo n.º 10
0
def build_toy_LN_cell():
    modelspec = from_keywords(LN.split('_')[1])
    return _set_LN_phi(modelspec)
Ejemplo n.º 11
0
    plt.imshow(np.fliplr(net1_layer_vals[0]['W'][:, :, 0].T),
               interpolation='none',
               origin='lower')
    plt.ylabel('time')
    plt.xlabel('feature')
    plt.title('Actual simulated weights')
    plt.colorbar()
else:
    D = np.reshape(est['resp'].as_continuous().copy().T, data_dims)
    Dv = np.reshape(val['resp'].as_continuous().copy().T, v_data_dims)

net1_seed = 50
tf.reset_default_graph()

if USE_LINK:
    modelspec = init.from_keywords(modelspecname, meta=meta)
    #layers = cnnlink.modelspec2cnn(modelspec, data_dims=data_dims, n_inputs=n_feats, fs=est['resp'].fs, net_seed=net1_seed)
    layers = cnnlink.modelspec2cnn(modelspec,
                                   n_inputs=n_feats,
                                   fs=est['resp'].fs)
    #layers = [{'act': 'identity', 'n_kern': 1,
    #  'time_win_sec': 0.01, 'type': 'reweight-positive'},
    # {'act': 'relu', 'n_kern': 1, 'rank': None,
    #  'time_win_sec': 0.15, 'type': 'conv'}]
    net2 = cnn.Net(data_dims,
                   n_feats,
                   sr_Hz,
                   deepcopy(layers),
                   seed=net1_seed,
                   log_dir=results_dir)
    #net2.optimizer = 'GradientDescent'