Ejemplo n.º 1
0
def _queue_fits(batch, modelnames, iterator):
    for siteid in iterator:
        for modelname in modelnames:
            do_fit = True
            if not FORCE_RERUN:
                d = nd.pd_query(
                    "SELECT * FROM Results WHERE cellid like %s and modelname=%s and batch=%s",
                    params=(siteid + "%", modelname, batch))
                if len(d) > 0:
                    do_fit = False
                    print(f'Fit exists for {siteid} {batch} {modelname}')
            if do_fit:
                enqueue_exacloud_models(cellist=[siteid],
                                        batch=batch,
                                        modellist=[modelname],
                                        useGPU=True,
                                        **EXACLOUD_SETTINGS)
Ejemplo n.º 2
0
def enqueue_models_view():
    """Call modelfit.enqueue_models with user selections as args."""

    user = get_current_user()

    # Only pull the numerals from the batch string, leave off the description.
    bSelected = request.args.get('bSelected')[:3]
    cSelected = request.args.getlist('cSelected[]')
    mSelected = request.args.getlist('mSelected[]')
    codeHash = request.args.get('codeHash')
    execPath = request.args.get('execPath')
    scriptPath = request.args.get('scriptPath')
    force_rerun = request.args.get('forceRerun', type=int)
    useKamiak = request.args.get('useKamiak', type=int)
    kamiakFunction = request.args.get(
        'kamiakFunction')  # fn to generate scripts
    kamiakPath = request.args.get('kamiakPath')  # path to store output in
    loadKamiak = request.args.get('loadKamiak',
                                  type=int)  # check to load results
    kamiakResults = request.args.get('kamiakResults')  # path to results
    useGPU = request.args.get('useGPU', type=int)  # path to results
    useExacloud = request.args.get('useExacloud', type=int)
    exaOHSU = request.args.get('exaOHSU')
    exaExec = request.args.get('exaExec')
    exaScript = request.args.get('exaScript')
    exaLimit = request.args.get('exaLimit')
    exaExclude = request.args.get('exaExclude')
    exaHighMem = request.args.get('exaHighMem', type=int)

    if loadKamiak:
        kamiak_to_database(cSelected, bSelected, mSelected, kamiakResults,
                           execPath, scriptPath)
        return jsonify(data=True)

    elif useExacloud:
        log.info('Starting exacloud jobs!')
        enqueue_exacloud_models(cellist=cSelected,
                                batch=bSelected,
                                modellist=mSelected,
                                user=user.username,
                                linux_user=exaOHSU,
                                executable_path=exaExec,
                                script_path=exaScript,
                                time_limit=exaLimit,
                                useGPU=useGPU,
                                high_mem=exaHighMem,
                                exclude=exaExclude)
        return jsonify(data=True)

    elif useKamiak:
        # kamiakFunction should be a stringified pointer to a function
        # that takes a list of cellids, a batch, a list of modelnames,
        # and a directory where the output should be stored,
        # Ex: kamiakScript = 'nems_lbhb.utils.my_kamiak_function'
        try:
            kamiak_script = _lookup_fn_at(kamiakFunction, ignore_table=True)
            kamiak_script(cSelected, bSelected, mSelected, kamiakPath)
            return jsonify(data=True)
        except AttributeError:
            log.warning('kamiakFunction doesnt exist or is improperly defined')
            return jsonify(data=False)
    else:
        if not codeHash:
            codeHash = 'master'
        if not execPath:
            execPath = None
        if not scriptPath:
            scriptPath = None

        enqueue_models(cSelected,
                       bSelected,
                       mSelected,
                       force_rerun=bool(force_rerun),
                       user=user.username,
                       codeHash=codeHash,
                       executable_path=execPath,
                       script_path=scriptPath,
                       GPU_job=useGPU)

        return jsonify(data=True)
Ejemplo n.º 3
0
if exacloud:
    from nems_lbhb.exacloud.queue_exacloud_job import enqueue_exacloud_models
    #force_rerun=True
    lbhb_user = "******"
    # exacloud settings:
    executable_path = '/home/users/davids/anaconda3/envs/nems/bin/python'
    script_path = '/home/users/davids/nems/scripts/fit_single.py'
    ssh_key = '/home/svd/.ssh/id_rsa'
    user = "******"

    enqueue_exacloud_models(cellist=sites,
                            batch=batch,
                            modellist=modelnames,
                            user=lbhb_user,
                            linux_user=user,
                            force_rerun=force_rerun,
                            executable_path=executable_path,
                            script_path=script_path,
                            useGPU=True)

else:
    script = '/auto/users/hellerc/code/NEMS/scripts/fit_single.py'
    python_path = '/auto/users/hellerc/anaconda3/envs/tf/bin/python'
    nd.enqueue_models(celllist=sites,
                      batch=batch,
                      modellist=modelnames,
                      executable_path=python_path,
                      script_path=script,
                      user='******',
                      force_rerun=force_rerun,
Ejemplo n.º 4
0
       323: modelname_filter.replace('.ver2','')}

# ROUND 1, all families pop
if 0:
    modelnames = ALL_FAMILY_POP[:-1]
    useGPU = True

    for batch in batches:
        if useGPU and (batch==322):
            c = ['NAT4v2']
        elif useGPU:
            c = ['NAT4']
        else:
            c = nd.batch_comp(modelnames=[modelname_filter], batch=batch).index.to_list()
        enqueue_exacloud_models(
            cellist=c, batch=batch, modellist=modelnames,
            user=lbhb_user, linux_user=user, force_rerun=force_rerun, priority=1,
            executable_path=executable_path_exa, script_path=script_path_exa, useGPU=useGPU)

if 0:
    # dnn single, round 1
    modelnames = DNN_SINGLE_MODELS[:5]

    # ln single, only 1 round
    modelnames = LN_SINGLE_MODELS[:10]

    # dnn single, round 2
    modelnames = DNN_SINGLE_STAGE2[:5]

    useGPU = False
    for batch in batches:
        cellids = nd.batch_comp(modelnames=[mfb[batch]], batch=batch).index.to_list()