Ejemplo n.º 1
0
    def test_simple_pyfunc(self):
        dt = 0.001
        m = nengo.Model("test_simple_pyfunc")

        time = Signal(np.zeros(1), name='time')
        sig = Signal(np.zeros(1), name='sig')
        pop = nengo.PythonFunction(fn=lambda t, x: np.sin(x), n_in=1)
        m.operators = []
        b = Builder()
        b.model = m
        b.build_pyfunc(pop)
        m.operators += [
            ProdUpdate(Signal(dt), Signal(1), Signal(1), time),
            DotInc(Signal([[1.0]]), time, pop.input_signal),
            ProdUpdate(Signal([[1.0]]), pop.output_signal, Signal(0), sig),
        ]

        sim = self.Simulator(m, dt=dt, builder=testbuilder)
        sim.step()
        for i in range(5):
            sim.step()

            t = (i + 2) * dt
            self.assertTrue(np.allclose(sim.signals[time], t),
                            msg='%s != %s' % (sim.signals[time], t))
            self.assertTrue(
                np.allclose(
                    sim.signals[sig], np.sin(t - dt*2)),
                msg='%s != %s' % (sim.signals[sig], np.sin(t - dt*2)))
Ejemplo n.º 2
0
    def _test_lif_base(self, cls=nengo.LIF):
        """Test that the dynamic model approximately matches the rates"""
        rng = np.random.RandomState(85243)

        dt = 0.001
        d = 1
        n = 5000

        m = nengo.Model("")
        ins = Signal(0.5 * np.ones(d), name='ins')
        lif = cls(n)
        lif.set_gain_bias(max_rates=rng.uniform(low=10, high=200, size=n),
                          intercepts=rng.uniform(low=-1, high=1, size=n))
        m.operators = []
        b = Builder()
        b.model = m
        b._builders[cls](lif)
        m.operators += [DotInc(Signal(np.ones((n, d))), ins, lif.input_signal)]

        sim = self.Simulator(m, dt=dt, builder=testbuilder)

        t_final = 1.0
        spikes = np.zeros(n)
        for i in range(int(np.round(t_final / dt))):
            sim.step()
            spikes += sim.signals[lif.output_signal]

        math_rates = lif.rates(sim.signals[lif.input_signal] - lif.bias)
        sim_rates = spikes / t_final
        logger.debug("ME = %f", (sim_rates - math_rates).mean())
        logger.debug("RMSE = %f",
                     rms(sim_rates - math_rates) / (rms(math_rates) + 1e-20))
        self.assertTrue(np.sum(math_rates > 0) > 0.5*n,
                        "At least 50% of neurons must fire")
        self.assertTrue(np.allclose(sim_rates, math_rates, atol=1, rtol=0.02))
Ejemplo n.º 3
0
    def test_encoder_decoder_pathway(self):
        """Verifies (like by hand) that the simulator does the right
        things in the right order."""

        m = nengo.Model("")
        dt = 0.001
        foo = Signal([1.0], name='foo')
        pop = nengo.PythonFunction(fn=lambda t, x: x + 1, n_in=2, label='pop')
        decoders = np.asarray([.2, .1])
        decs = Signal(decoders * 0.5)

        m.operators = []
        b = Builder()
        b.model = m
        b.build_pyfunc(pop)
        m.operators += [
            DotInc(Signal([[1.0], [2.0]]), foo, pop.input_signal),
            ProdUpdate(decs, pop.output_signal, Signal(0.2), foo)
        ]

        def check(sig, target):
            self.assertTrue(np.allclose(sim.signals[sig], target),
                            "%s: value %s is not close to target %s" %
                            (sig, sim.signals[sig], target))

        sim = self.Simulator(m, dt=dt, builder=testbuilder)

        check(foo, 1.0)
        check(pop.input_signal, 0)
        check(pop.output_signal, 0)

        sim.step()
        #DotInc to pop.input_signal (input=[1.0,2.0])
        #produpdate updates foo (foo=[0.2])
        #pop updates pop.output_signal (output=[2,3])

        check(pop.input_signal, [1, 2])
        check(pop.output_signal, [2, 3])
        check(foo, .2)
        check(decs, [.1, .05])

        sim.step()
        #DotInc to pop.input_signal (input=[0.2,0.4])
        # (note that pop resets its own input signal each timestep)
        #produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
        #pop updates pop.output_signal (output=[1.2,1.4])

        check(decs, [.1, .05])
        check(pop.input_signal, [0.2, 0.4])
        check(pop.output_signal, [1.2, 1.4])
        # -- foo is computed as a prodUpdate of the *previous* output signal
        #    foo <- .2 * foo + dot(decoders * .5, output_signal)
        #           .2 * .2  + dot([.2, .1] * .5, [2, 3])
        #           .04      + (.2 + .15)
        #        <- .39
        check(foo, .39)
Ejemplo n.º 4
0
    def test_simple_direct_mode(self):
        dt = 0.001
        m = nengo.Model("test_simple_direct_mode")

        time = Signal(n=1, name='time')
        sig = Signal(n=1, name='sig')
        pop = Direct(n_in=1, n_out=1, fn=np.sin)
        m.signals = [sig, time]
        m.operators = []
        Builder().build_direct(pop, m, dt)
        m.operators += [
            ProdUpdate(Constant(dt), Constant(1), Constant(1), time),
            DotInc(Constant([[1.0]]), time, pop.input_signal),
            ProdUpdate(Constant([[1.0]]), pop.output_signal, Constant(0), sig)
        ]

        sim = m.simulator(sim_class=self.Simulator, dt=dt, builder=testbuilder)
        sim.step()
        for i in range(5):
            sim.step()

            t = (i + 2) * dt
            self.assertTrue(np.allclose(sim.signals[time], t),
                            msg='%s != %s' % (sim.signals[time], t))
            self.assertTrue(np.allclose(sim.signals[sig], np.sin(t - dt * 2)),
                            msg='%s != %s' %
                            (sim.signals[sig], np.sin(t - dt * 2)))
Ejemplo n.º 5
0
    def test_encoder_decoder_with_views(self):
        m = nengo.Model("")
        dt = 0.001
        foo = Signal([1.0], name='foo')
        pop = nengo.PythonFunction(fn=lambda t, x: x + 1, n_in=2, label='pop')
        decoders = np.asarray([.2, .1])

        m.operators = []
        b = Builder()
        b.model = m
        b.build_pyfunc(pop)
        m.operators += [
            DotInc(Signal([[1.0], [2.0]]), foo[:], pop.input_signal),
            ProdUpdate(
                Signal(decoders * 0.5), pop.output_signal, Signal(0.2), foo[:])
        ]

        def check(sig, target):
            self.assertTrue(np.allclose(sim.signals[sig], target),
                            "%s: value %s is not close to target %s" %
                            (sig, sim.signals[sig], target))

        sim = self.Simulator(m, dt=dt, builder=testbuilder)

        #pop.input_signal = [0,0]
        #pop.output_signal = [0,0]

        sim.step()
        #DotInc to pop.input_signal (input=[1.0,2.0])
        #produpdate updates foo (foo=[0.2])
        #pop updates pop.output_signal (output=[2,3])

        check(foo, .2)
        check(pop.input_signal, [1, 2])
        check(pop.output_signal, [2, 3])

        sim.step()
        #DotInc to pop.input_signal (input=[0.2,0.4])
        # (note that pop resets its own input signal each timestep)
        #produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
        #pop updates pop.output_signal (output=[1.2,1.4])

        check(foo, .39)
        check(pop.input_signal, [0.2, 0.4])
        check(pop.output_signal, [1.2, 1.4])
Ejemplo n.º 6
0
    def test_pyfunc(self):
        """Test Python Function nonlinearity"""

        dt = 0.001
        d = 3
        n_steps = 3
        n_trials = 3

        rng = np.random.RandomState(seed=987)

        for i in range(n_trials):
            A = rng.normal(size=(d, d))
            fn = lambda t, x: np.cos(np.dot(A, x))

            x = np.random.normal(size=d)

            m = nengo.Model("")
            ins = Signal(x, name='ins')
            pop = nengo.PythonFunction(fn=fn, n_in=d)
            m.operators = []
            b = Builder()
            b.model = m
            b.build_pyfunc(pop)
            m.operators += [
                DotInc(Signal(np.eye(d)), ins, pop.input_signal),
                ProdUpdate(
                    Signal(np.eye(d)), pop.output_signal, Signal(0), ins)
            ]

            sim = self.Simulator(m, dt=dt, builder=testbuilder)

            p0 = np.zeros(d)
            s0 = np.array(x)
            for j in range(n_steps):
                tmp = p0
                p0 = fn(0, s0)
                s0 = tmp
                sim.step()
                assert_allclose(self, logger, s0, sim.signals[ins])
                assert_allclose(
                    self, logger, p0, sim.signals[pop.output_signal])
Ejemplo n.º 7
0
def test_custom_type(Simulator, allclose):
    """Test with custom learning rule type.

    A custom learning type may have ``size_in`` not equal to 0, 1, or None.
    """
    class TestRule(nengo.learning_rules.LearningRuleType):
        modifies = "decoders"

        def __init__(self):
            super().__init__(1.0, size_in=3)

    def build_test_rule(model, _, rule):
        error = Signal(np.zeros(rule.connection.size_in))
        model.add_op(Reset(error))
        model.sig[rule]["in"] = error[:rule.size_in]

        model.add_op(Copy(error, model.sig[rule]["delta"]))

    Builder.register(TestRule)(build_test_rule)

    with nengo.Network() as net:
        a = nengo.Ensemble(10, 1)
        b = nengo.Ensemble(10, 1)
        conn = nengo.Connection(a.neurons,
                                b,
                                transform=np.zeros((1, 10)),
                                learning_rule_type=TestRule())

        err = nengo.Node([1, 2, 3])
        nengo.Connection(err, conn.learning_rule, synapse=None)

        p = nengo.Probe(conn, "weights")

    with Simulator(net) as sim:
        sim.run(sim.dt * 5)

    assert allclose(sim.data[p][:, 0, :3],
                    np.outer(np.arange(1, 6), np.arange(1, 4)))
    assert allclose(sim.data[p][:, :, 3:], 0)
Ejemplo n.º 8
0
    def test_encoder_decoder_with_views(self):
        m = nengo.Model("")
        dt = 0.001
        foo = Signal(n=1, name='foo')
        pop = Direct(n_in=2, n_out=2, fn=lambda x: x + 1, name='pop')

        decoders = np.asarray([.2, .1])

        m.signals = [foo]
        m.operators = []
        Builder().build_direct(pop, m, dt)
        m.operators += [
            DotInc(Constant([[1.0], [2.0]]), foo[:], pop.input_signal),
            ProdUpdate(Constant(decoders * 0.5), pop.output_signal,
                       Constant(0.2), foo[:])
        ]

        def check(sig, target):
            self.assertTrue(
                np.allclose(sim.signals[sig],
                            target), "%s: value %s is not close to target %s" %
                (sig, sim.signals[sig], target))

        sim = m.simulator(sim_class=self.Simulator, dt=dt, builder=testbuilder)

        #set initial value of foo (foo=1.0)
        sim.signals[foo] = np.asarray([1.0])
        #pop.input_signal = [0,0]
        #pop.output_signal = [0,0]

        sim.step()
        #DotInc to pop.input_signal (input=[1.0,2.0])
        #produpdate updates foo (foo=[0.2])
        #pop updates pop.output_signal (output=[2,3])

        check(foo, .2)
        check(pop.input_signal, [1, 2])
        check(pop.output_signal, [2, 3])

        sim.step()
        #DotInc to pop.input_signal (input=[0.2,0.4])
        # (note that pop resets its own input signal each timestep)
        #produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
        #pop updates pop.output_signal (output=[1.2,1.4])

        check(foo, .39)
        check(pop.input_signal, [0.2, 0.4])
        check(pop.output_signal, [1.2, 1.4])
Ejemplo n.º 9
0
    def test_direct(self):
        """Test direct mode"""

        dt = 0.001
        d = 3
        n_steps = 3
        n_trials = 3

        rng = np.random.RandomState(seed=987)

        for i in xrange(n_trials):
            A = rng.normal(size=(d, d))
            fn = lambda x: np.cos(np.dot(A, x))

            x = np.random.normal(size=d)

            m = nengo.Model("")
            ins = Signal(n=d, name='ins')
            pop = Direct(n_in=d, n_out=d, fn=fn)
            m.signals = [ins]
            m.operators = []
            Builder().build_direct(pop, m, dt)
            m.operators += [
                DotInc(Constant(np.eye(d)), ins, pop.input_signal),
                ProdUpdate(Constant(np.eye(d)), pop.output_signal, Constant(0),
                           ins)
            ]

            sim = m.simulator(sim_class=self.Simulator,
                              dt=dt,
                              builder=testbuilder)
            sim.signals[ins] = x

            p0 = np.zeros(d)
            s0 = np.array(x)
            for j in xrange(n_steps):
                tmp = p0
                p0 = fn(s0)
                s0 = tmp
                sim.step()
                assert np.allclose(s0, sim.signals[ins])
                assert np.allclose(p0, sim.signals[pop.output_signal])
Ejemplo n.º 10
0
    def _test_lif_base(self, cls=LIF):
        """Test that the dynamic model approximately matches the rates"""
        rng = np.random.RandomState(85243)

        dt = 0.001
        d = 1
        n = 5e3

        m = nengo.Model("")
        ins = Signal(n=d, name='ins')
        lif = cls(n)
        lif.set_gain_bias(max_rates=rng.uniform(low=10, high=200, size=n),
                          intercepts=rng.uniform(low=-1, high=1, size=n))
        m.signals = [ins]
        m.operators = []
        b = Builder()
        b._builders[cls](lif, m, dt)
        m.operators += [
            DotInc(Constant(np.ones((n, d))), ins, lif.input_signal)
        ]

        sim = m.simulator(sim_class=self.Simulator, dt=dt, builder=testbuilder)
        sim.signals[ins] = 0.5 * np.ones(d)

        t_final = 1.0
        spikes = np.zeros(n)
        for i in xrange(int(np.round(t_final / dt))):
            sim.step()
            spikes += sim.signals[lif.output_signal]

        math_rates = lif.rates(sim.signals[lif.input_signal] - lif.bias)
        sim_rates = spikes / t_final
        logger.debug("ME = %f", (sim_rates - math_rates).mean())
        logger.debug("RMSE = %f",
                     rms(sim_rates - math_rates) / (rms(math_rates) + 1e-20))
        self.assertTrue(
            np.sum(math_rates > 0) > 0.5 * n,
            "At least 50% of neurons must fire")
        self.assertTrue(np.allclose(sim_rates, math_rates, atol=1, rtol=0.02))
Ejemplo n.º 11
0
    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        self.dt = dt
        if model is None:
            self.model = Model(dt=self.dt, label="%s, dt=%f" % (network.label, dt), seed=network.seed)
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            Builder.build(network, model=self.model)

        # Use model seed as simulator seed if the seed is not provided
        # Note: seed is not used right now, but one day...
        self.seed = self.model.seed if seed is None else seed

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals, self.dt)

        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [node for node in toposort(self.dg) if hasattr(node, "make_step")]
        self._steps = [node.make_step(self.signals, self.dt) for node in self._step_order]

        self.n_steps = 0

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)
Ejemplo n.º 12
0
    def test_encoder_decoder_pathway(self):
        #
        # This test is a very short and small simulation that
        # verifies (like by hand) that the simulator does the right
        # things in the right order.
        #
        m = nengo.Model("")
        dt = 0.001
        foo = Signal(n=1, name='foo')
        pop = Direct(n_in=2, n_out=2, fn=lambda x: x + 1, name='pop')

        decoders = np.asarray([.2, .1])
        decs = Constant(decoders * 0.5)

        m.signals = [foo, decs]
        m.operators = []
        Builder().build_direct(pop, m, dt)
        m.operators += [
            DotInc(Constant([[1.0], [2.0]]), foo, pop.input_signal),
            ProdUpdate(decs, pop.output_signal, Constant(0.2), foo)
        ]

        def check(sig, target):
            self.assertTrue(
                np.allclose(sim.signals[sig],
                            target), "%s: value %s is not close to target %s" %
                (sig, sim.signals[sig], target))

        sim = m.simulator(sim_class=self.Simulator, dt=dt, builder=testbuilder)

        # -- initialize things
        sim.signals[foo] = np.asarray([1.0])
        check(foo, 1.0)
        check(pop.input_signal, 0)
        check(pop.output_signal, 0)

        sim.step()
        #DotInc to pop.input_signal (input=[1.0,2.0])
        #produpdate updates foo (foo=[0.2])
        #pop updates pop.output_signal (output=[2,3])

        check(pop.input_signal, [1, 2])
        check(pop.output_signal, [2, 3])
        check(foo, .2)
        check(decs, [.1, .05])

        sim.step()
        #DotInc to pop.input_signal (input=[0.2,0.4])
        # (note that pop resets its own input signal each timestep)
        #produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
        #pop updates pop.output_signal (output=[1.2,1.4])

        check(decs, [.1, .05])
        check(pop.input_signal, [0.2, 0.4])
        check(pop.output_signal, [1.2, 1.4])
        # -- foo is computed as a prodUpdate of the *previous* output signal
        #    foo <- .2 * foo + dot(decoders * .5, output_signal)
        #           .2 * .2  + dot([.2, .1] * .5, [2, 3])
        #           .04      + (.2 + .15)
        #        <- .39
        check(foo, .39)
Ejemplo n.º 13
0
    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        self.dt = dt
        if model is None:
            self.model = Model(dt=self.dt,
                               label="%s, dt=%f" % (network.label, dt),
                               seed=network.seed)
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            Builder.build(network, model=self.model)

        # Use model seed as simulator seed if the seed is not provided
        # Note: seed is not used right now, but one day...
        self.seed = self.model.seed if seed is None else seed

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals, self.dt)

        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [node for node in toposort(self.dg)
                            if hasattr(node, 'make_step')]
        self._steps = [node.make_step(self.signals, self.dt)
                       for node in self._step_order]

        self.n_steps = 0

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)