Ejemplo n.º 1
0
def test_conv_onchip(Simulator, plt):
    """Tests a fully on-chip conv connection. """
    from nengo._vendor.npconv2d.conv2d import conv2d

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array([[1, 2, 1, 2, 0], [2, 3, 2, 1, 1], [1, 2, 1, 2, 3],
                      [2, 3, 2, 1, 1], [1, 2, 1, 2, 0]],
                     dtype=float)
    image /= image.max()

    input_scale = 119.
    bias = input_scale * image.ravel()

    neuron_type = nengo.SpikingRectifiedLinear()

    y_ref = LoihiSpikingRectifiedLinear().rates(image.ravel(), input_scale, 0)
    y_ref = conv2d(y_ref.reshape(1, 5, 5, 1),
                   kernel.reshape(3, 3, 1, 1),
                   pad='VALID')
    y_ref = LoihiSpikingRectifiedLinear().rates(y_ref.ravel(), 1.,
                                                0.).reshape(3, 3)

    with nengo.Network() as net:
        a = nengo.Ensemble(bias.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([0]),
                           bias=bias)

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     3, 3, 1, 1))

        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([1]),
                           bias=nengo.dists.Choice([0]))

        nengo.Connection(a.neurons, b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    with Simulator(net) as sim:
        sim.run(0.3)

    y_ref = y_ref / input_scale
    y = sim.data[bp][-1].reshape(3, -1) / input_scale

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
Ejemplo n.º 2
0
def test_conv_gain(Simulator):
    with nengo.Network() as net:
        a = nengo.Ensemble(16, 1)
        b = nengo.Ensemble(4, 1)
        nengo.Connection(a.neurons,
                         b.neurons,
                         transform=nengo_transforms.Convolution(1, (4, 4, 1)))

    with pytest.raises(ValidationError, match="must have the same gain"):
        with Simulator(net):
            pass
Ejemplo n.º 3
0
def split_transform(transform, in_slice=None, out_slice=None):
    a_slice = slice(None)
    b_slice = slice(None)

    if isinstance(transform, nengo_transforms.Convolution):
        if in_slice is not None:
            assert in_slice.channel_slice_only()
            a_slice = in_slice.channel_slice
        if out_slice is not None:
            assert out_slice.channel_slice_only()
            b_slice = out_slice.channel_slice

        assert isinstance(transform.init, np.ndarray), "doesn't work with distributions"
        kernel = transform.init[:, :, a_slice, b_slice]
        rows, cols = transform.input_shape.spatial_shape
        nc = kernel.shape[2]
        input_shape = nengo_transforms.ChannelShape(
            (rows, cols, nc) if transform.channels_last else (nc, rows, cols),
            channels_last=transform.channels_last,
        )
        return nengo_transforms.Convolution(
            kernel.shape[3],
            input_shape,
            strides=transform.strides,
            channels_last=transform.channels_last,
            padding=transform.padding,
            kernel_size=transform.kernel_size,
            init=kernel,
        )
    else:
        if in_slice is not None:
            assert in_slice.channel_slice_only()
            a_slice = in_slice.channel_slice
        if out_slice is not None:
            assert out_slice.channel_slice_only()
            b_slice = out_slice.channel_slice

        return transform[b_slice, a_slice]
Ejemplo n.º 4
0
def test_conv_preslice(Simulator, plt):
    from nengo._vendor.npconv2d.conv2d import conv2d

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array([[1, 2, 1, 2, 0], [2, 3, 2, 1, 1], [1, 2, 1, 2, 3],
                      [2, 3, 2, 1, 1], [1, 2, 1, 2, 0]],
                     dtype=float)
    image /= image.max()

    image2 = np.column_stack([c * x for c in image.T for x in (1, -1)])

    input_gain = 149.

    neuron_type = nengo.SpikingRectifiedLinear()

    y_ref = LoihiSpikingRectifiedLinear().rates(image.ravel(), input_gain, 0)
    y_ref = conv2d(y_ref.reshape(1, 5, 5, 1),
                   kernel.reshape(3, 3, 1, 1),
                   pad='VALID')
    y_ref = LoihiSpikingRectifiedLinear().rates(y_ref.ravel(), 1.,
                                                0.).reshape(3, 3)

    with nengo.Network() as net:
        u = nengo.Node(image2.ravel())
        a = nengo.Ensemble(50,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([input_gain]),
                           bias=nengo.dists.Choice([0]))

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     3, 3, 1, 1))

        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([1]),
                           bias=nengo.dists.Choice([0]))

        nengo.Connection(u, a.neurons, synapse=None)
        nengo.Connection(a.neurons[::2], b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    hw_opts = dict(snip_max_spikes_per_step=100)
    with Simulator(net, hardware_options=hw_opts) as sim:
        sim.run(0.3)

    y_ref = y_ref / input_gain
    y = sim.data[bp][-1].reshape(3, -1) / input_gain

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
Ejemplo n.º 5
0
def test_conv_split(Simulator, rng, plt, allclose):
    channels_last = False

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    input_shape = nengo_transforms.ChannelShape((1, 28, 28),
                                                channels_last=channels_last)

    n_filters = 8
    kernel_size = (7, 7)
    kernel = Gabor(freq=Uniform(0.5, 1)).generate(n_filters,
                                                  kernel_size,
                                                  rng=rng)
    kernel = kernel[None, :, :, :]  # single channel
    kernel = np.transpose(kernel, (2, 3, 0, 1))
    strides = (2, 2)

    seed = 3  # fix seed to do the same computation for both channel positions

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        a = nengo.Node(test10[0][0].ravel())

        # --- make population to turn image into spikes
        nc = 1
        in_kernel = np.array([1.]).reshape((1, 1, 1, nc))
        transform = nengo_transforms.Convolution(1,
                                                 input_shape,
                                                 kernel_size=(1, 1),
                                                 init=in_kernel,
                                                 channels_last=channels_last)
        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.SpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([50]),
                           intercepts=nengo.dists.Choice([0]))
        net.config[b].on_chip = False
        nengo.Connection(a, b.neurons, transform=transform)
        in_shape = transform.output_shape

        transform = nengo_transforms.Convolution(n_filters,
                                                 in_shape,
                                                 kernel_size=kernel_size,
                                                 strides=strides,
                                                 init=kernel,
                                                 channels_last=channels_last)
        out_shape = transform.output_shape
        split_slices = conv.split_channels(out_shape,
                                           max_size=1024,
                                           max_channels=4)

        # --- make convolution population, split across ensembles
        cc = []
        cp = []
        out_shapes = []
        xslice = conv.ImageSlice(in_shape)
        for yslice in split_slices:
            transform_xy = conv.split_transform(transform, xslice, yslice)
            out_shapes.append(transform_xy.output_shape)
            c = nengo.Ensemble(transform_xy.output_shape.size,
                               1,
                               neuron_type=nengo.LIF(),
                               max_rates=nengo.dists.Choice([15]),
                               intercepts=nengo.dists.Choice([0]))
            nengo.Connection(b.neurons, c.neurons, transform=transform_xy)
            cc.append(c)
            cp.append(nengo.Probe(c.neurons))

    simtime = 0.3

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(simtime)

    hw_opts = dict(snip_max_spikes_per_step=100)
    with Simulator(net, seed=seed, hardware_options=hw_opts) as sim_loihi:
        sim_loihi.run(simtime)

    nengo_out = []
    loihi_out = []
    for p, out_shape_i in zip(cp, out_shapes):
        nengo_out.append(
            (sim_nengo.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))
        loihi_out.append(
            (sim_loihi.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))

    if channels_last:
        nengo_out = np.concatenate(nengo_out, axis=2)
        loihi_out = np.concatenate(loihi_out, axis=2)

        # put channels first to display them separately
        nengo_out = np.transpose(nengo_out, (2, 0, 1))
        loihi_out = np.transpose(loihi_out, (2, 0, 1))
    else:
        nengo_out = np.concatenate(nengo_out, axis=0)
        loihi_out = np.concatenate(loihi_out, axis=0)

    out_max = np.maximum(nengo_out.max(), loihi_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test10[0][0].reshape((28, 28)), vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(kernel[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(nengo_out.ravel(), bins=31)
    plt.hist(loihi_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(nengo_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(loihi_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(loihi_out, nengo_out, atol=0.05 * out_max, rtol=0.15)
Ejemplo n.º 6
0
def test_conv_input(channels_last, Simulator, plt, allclose):
    input_shape = nengo_transforms.ChannelShape((4, 4, 1) if channels_last else
                                                (1, 4, 4),
                                                channels_last=channels_last)
    seed = 3  # fix seed to do the same computation for both channel positions
    rng = np.random.RandomState(seed + 1)

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        a = nengo.Node(rng.uniform(0, 1, size=input_shape.size))

        nc = 2
        kernel = np.array([1., -1.]).reshape((1, 1, 1, nc))
        transform = nengo_transforms.Convolution(nc,
                                                 input_shape,
                                                 channels_last=channels_last,
                                                 init=kernel,
                                                 kernel_size=(1, 1))
        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.SpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([50]),
                           intercepts=nengo.dists.Choice([0]))
        net.config[b].on_chip = False
        nengo.Connection(a, b.neurons, transform=transform)
        output_shape = transform.output_shape

        nf = 4
        kernel = rng.uniform(-0.005, 0.005, size=(3, 3, nc, nf))
        transform = nengo_transforms.Convolution(nf,
                                                 output_shape,
                                                 channels_last=channels_last,
                                                 init=-kernel,
                                                 kernel_size=(3, 3))
        c = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.LIF(),
                           max_rates=nengo.dists.Choice([100]),
                           intercepts=nengo.dists.Choice([0]))
        nengo.Connection(b.neurons, c.neurons, transform=transform)
        output_shape = transform.output_shape

        p = nengo.Probe(c.neurons)

    with nengo.Simulator(net, optimize=False) as sim:
        sim.run(1.0)

    with Simulator(net, seed=seed) as sim_loihi:
        sim_loihi.run(1.0)

    p0 = np.sum(sim.data[p] > 0, axis=0).reshape(output_shape.shape)
    p1 = np.sum(sim_loihi.data[p] > 0, axis=0).reshape(output_shape.shape)
    if not channels_last:
        p0 = np.transpose(p0, (1, 2, 0))
        p1 = np.transpose(p1, (1, 2, 0))

    plt.plot(p0.ravel(), 'k')
    plt.plot(p1.ravel(), 'b--')

    # loihi spikes are not exactly the same, but should be close-ish
    assert allclose(p0, p1, rtol=0.15, atol=1)
Ejemplo n.º 7
0
def test_pop_tiny(pop_type, channels_last, nc, request, plt, seed, allclose):
    tau_rc = 0.02
    tau_ref = 0.001
    tau_s = 0.0
    dt = 0.001

    neuron_bias = 1.

    pres_time = 0.4

    sti, stj = 1, 1

    if nc == 1:
        filters = np.array([[-0.5, 2., -0.25], [-0.75, 2., -1.0],
                            [-0.5, 3., -0.5], [-1.0, 6.,
                                               -0.25]]).reshape(1, 4, 1, 3)

        inp_biases = np.array([[1, 5, 1], [2, 1, 2]])
        inp_biases = inp_biases[:, :, None]
    elif nc == 2:
        filters = np.array([[[-0.5, 2., -0.2], [-0.7, 2., -1.0],
                             [-0.5, 3., -0.5], [-1.0, 6., -0.2]],
                            [[-1.0, 2., -1.0], [-0.5, 2., -0.5],
                             [-0.8, 3., -0.2], [-1.0, 4.,
                                                -0.2]]]).reshape(2, 4, 1, 3)

        inp_biases = np.array([[[1, 5, 1], [2, 1, 2]], [[0, 3, 1], [4, 2, 1]]])
        inp_biases = np.transpose(inp_biases, (1, 2, 0))

    # rearrange to (kernel_rows, kernel_cols, in_channels, out_channels)
    filters = np.transpose(filters, (2, 3, 0, 1))

    inp_biases = inp_biases / (inp_biases.max() + 0.001)

    # --- compute nengo_loihi outputs
    ni, nj, nk = inp_biases.shape
    si, sj, nc, nf = filters.shape
    nij = ni * nj
    nyi = 1 + (ni - si) // sti
    nyj = 1 + (nj - sj) // stj
    out_size = nyi * nyj * nf
    assert out_size <= 1024

    model = Model()

    # input block
    inp = LoihiBlock(ni * nj * nk, label='inp')
    assert inp.n_neurons <= 1024
    inp.compartment.configure_relu()
    inp.compartment.bias[:] = inp_biases.ravel()

    inp_ax = Axon(nij, label='inp_ax')

    # we always compute the pixel/channel idxs with channels_last=True
    # (not sure why?), and then set it to the correct value afterwards
    inp_shape = nengo_transforms.ChannelShape((ni, nj, nk), channels_last=True)
    inp_ax.set_compartment_axon_map(target_axons=conv.pixel_idxs(inp_shape),
                                    atoms=conv.channel_idxs(inp_shape))
    inp_shape.shape = (ni, nj, nk) if channels_last else (nk, ni, nj)
    inp_shape.channels_last = channels_last

    inp.add_axon(inp_ax)

    model.add_block(inp)

    # conv block
    neurons = LoihiBlock(out_size, label='neurons')
    assert neurons.n_neurons <= 1024
    neurons.compartment.configure_lif(tau_rc=tau_rc, tau_ref=tau_ref, dt=dt)
    neurons.compartment.configure_filter(tau_s, dt=dt)
    neurons.compartment.bias[:] = neuron_bias

    synapse = Synapse(np.prod(inp_shape.spatial_shape), label='synapse')
    conv2d_transform = nengo_transforms.Convolution(
        nf,
        inp_shape,
        strides=(sti, stj),
        channels_last=channels_last,
        init=filters,
        kernel_size=(1, 3))
    weights, indices, axon_to_weight_map, bases = conv.conv2d_loihi_weights(
        conv2d_transform)
    synapse.set_population_weights(weights,
                                   indices,
                                   axon_to_weight_map,
                                   bases,
                                   pop_type=pop_type)
    neurons.add_synapse(synapse)

    out_probe = Probe(target=neurons, key='spiked')
    neurons.add_probe(out_probe)

    inp_ax.target = synapse
    model.add_block(neurons)

    # simulation
    discretize_model(model)

    n_steps = int(pres_time / dt)
    target = request.config.getoption("--target")
    if target == 'loihi':
        with HardwareInterface(model, use_snips=False, seed=seed) as sim:
            sim.run_steps(n_steps)
            sim_out = sim.get_probe_output(out_probe)
    else:
        with EmulatorInterface(model, seed=seed) as sim:
            sim.run_steps(n_steps)
            sim_out = sim.get_probe_output(out_probe)

    sim_out = np.sum(sim_out, axis=0) * (dt / pres_time)
    if channels_last:
        sim_out.shape = (nyi, nyj, nf)
        sim_out = np.transpose(sim_out, (2, 0, 1))
    else:
        sim_out.shape = (nf, nyi, nyj)

    out_max = sim_out.max()

    # --- plot results
    rows = 1
    cols = 2

    ax = plt.subplot(rows, cols, 1)
    plt.hist(sim_out.ravel(), bins=11)

    ax = plt.subplot(rows, cols, 2)
    tile(sim_out, vmin=0, vmax=out_max, grid=True, ax=ax)

    # ref_out determined by emulator running code known to work
    if nc == 1:
        ref_out = np.array([[0.06, 0.02], [0.055, 0.], [0.0825, 0.0225],
                            [0.125, 0.04]])
    elif nc == 2:
        ref_out = np.array([[0.0975, 0.02], [0.0825, 0.02], [0.125, 0.055],
                            [0.2475, 0.0825]])
    assert allclose(sim_out[:, :, 0], ref_out, rtol=0, atol=1e-7)
Ejemplo n.º 8
0
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    if channels_last:
        plt.saveas = None
        pytest.xfail("Blocked by CxBase cannot be > 256 bug")

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = nengo_transforms.ChannelShape(
        (test_x.shape + (channels, )) if channels_last else
        ((channels, ) + test_x.shape),
        channels_last=channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(input_shape.size,
                           1,
                           neuron_type=LoihiSpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([40 / channels]),
                           intercepts=nengo.dists.Choice([0]),
                           label='a')
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters)

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([gain[0]]),
                           bias=nengo.dists.Choice([bias[0]]),
                           label='b')
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, dt=dt, optimize=False) as sim:
        sim.run(pres_time)
    ref_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape)

    # Currently, non-gpu TensorFlow does not support channels first in conv
    use_nengo_dl = HAS_DL and channels_last
    ndl_out = np.zeros_like(ref_out)
    if use_nengo_dl:
        with nengo_dl.Simulator(model, dt=dt) as sim_dl:
            sim_dl.run(pres_time)
        ndl_out = sim_dl.data[bp].mean(axis=0).reshape(output_shape.shape)

    with nengo_loihi.Simulator(model, dt=dt, target='simreal') as sim_real:
        sim_real.run(pres_time)
    real_out = sim_real.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, dt=dt) as sim_loihi:
        if "loihi" in sim_loihi.sims:
            sim_loihi.sims["loihi"].snip_max_spikes_per_step = 800
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        ndl_out = np.transpose(ndl_out, (1, 2, 0))
        real_out = np.transpose(real_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(ndl_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    if use_nengo_dl:
        assert allclose(ndl_out, ref_out, atol=1e-5, rtol=1e-5)
    assert allclose(real_out, ref_out, atol=1, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
Ejemplo n.º 9
0
def test_conv2d_weights(channels_last, hw_opts, request, plt, seed, rng,
                        allclose):
    def loihi_rates_n(neuron_type, x, gain, bias, dt):
        """Compute Loihi rates on higher dimensional inputs"""
        y = x.reshape(-1, x.shape[-1])
        gain = np.asarray(gain)
        bias = np.asarray(bias)
        if gain.ndim == 0:
            gain = gain * np.ones(x.shape[-1])
        if bias.ndim == 0:
            bias = bias * np.ones(x.shape[-1])
        rates = loihi_rates(neuron_type, y, gain, bias, dt)
        return rates.reshape(*x.shape)

    if channels_last:
        plt.saveas = None
        pytest.xfail("Blocked by CxBase cannot be > 256 bug")

    target = request.config.getoption("--target")
    if target != 'loihi' and len(hw_opts) > 0:
        pytest.skip("Hardware options only available on hardware")

    pop_type = 32

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = test_x[3:24, 3:24]
    test_x = 1.999 * test_x - 0.999

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    sti, stj = 2, 2
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    encode_type = nengo.SpikingRectifiedLinear()
    encode_gain = 1. / dt
    encode_bias = 0.
    neuron_type = nengo.LIF(tau_rc=tau_rc, tau_ref=tau_ref)
    neuron_gain = 1.
    neuron_bias = 1.

    pres_time = 0.2

    # --- compute ideal outputs
    def conv_pm(x, kernel):
        y0 = scipy.signal.correlate2d(x[0], kernel, mode='valid')[::sti, ::stj]
        y1 = scipy.signal.correlate2d(x[1], kernel, mode='valid')[::sti, ::stj]
        return [y0, -y1]

    ref_out = np.array([test_x, -test_x])
    ref_out = loihi_rates_n(encode_type, ref_out, encode_gain, encode_bias, dt)
    ref_out = ref_out / encode_gain
    ref_out = np.array([conv_pm(ref_out, kernel) for kernel in filters])
    ref_out = ref_out.sum(axis=1)  # sum positive and negative parts
    ref_out = loihi_rates_n(neuron_type, ref_out, neuron_gain, neuron_bias, dt)

    # --- compute nengo_loihi outputs
    inp_biases = np.stack([test_x, -test_x], axis=-1 if channels_last else 0)
    inp_shape = nengo_transforms.ChannelShape(inp_biases.shape,
                                              channels_last=channels_last)

    kernel = np.array([filters, -filters])  # two channels, pos and neg
    kernel = np.transpose(kernel, (2, 3, 0, 1))
    conv2d_transform = nengo_transforms.Convolution(
        8,
        inp_shape,
        strides=(sti, stj),
        channels_last=channels_last,
        kernel_size=(7, 7),
        init=kernel)

    out_size = ref_out.size
    nf, nyi, nyj = ref_out.shape
    assert out_size <= 1024

    model = Model()

    # input block
    inp = LoihiBlock(inp_shape.size, label='inp')
    assert inp.n_neurons <= 1024
    inp.compartment.configure_relu()
    inp.compartment.bias[:] = inp_biases.ravel()

    inp_ax = Axon(np.prod(inp_shape.spatial_shape), label='inp_ax')
    inp_ax.set_compartment_axon_map(target_axons=conv.pixel_idxs(inp_shape),
                                    atoms=conv.channel_idxs(inp_shape))
    inp.add_axon(inp_ax)

    model.add_block(inp)

    # conv block
    neurons = LoihiBlock(out_size, label='neurons')
    assert neurons.n_neurons <= 1024
    neurons.compartment.configure_lif(tau_rc=tau_rc, tau_ref=tau_ref, dt=dt)
    neurons.compartment.configure_filter(tau_s, dt=dt)
    neurons.compartment.bias[:] = neuron_bias

    synapse = Synapse(np.prod(inp_shape.spatial_shape), label='synapse')
    weights, indices, axon_to_weight_map, bases = conv.conv2d_loihi_weights(
        conv2d_transform)
    synapse.set_population_weights(weights,
                                   indices,
                                   axon_to_weight_map,
                                   bases,
                                   pop_type=pop_type)

    neurons.add_synapse(synapse)

    out_probe = Probe(target=neurons, key='spiked')
    neurons.add_probe(out_probe)

    inp_ax.target = synapse
    model.add_block(neurons)

    # simulation
    discretize_model(model)

    n_steps = int(pres_time / dt)
    if target == 'loihi':
        with HardwareInterface(model, use_snips=False, seed=seed,
                               **hw_opts) as sim:
            sim.run_steps(n_steps)
            sim_out = sim.get_probe_output(out_probe)
    else:
        with EmulatorInterface(model, seed=seed) as sim:
            sim.run_steps(n_steps)
            sim_out = sim.get_probe_output(out_probe)

    sim_out = np.sum(sim_out, axis=0) / pres_time
    if channels_last:
        sim_out.shape = (nyi, nyj, nf)
        sim_out = np.transpose(sim_out, (2, 0, 1))
    else:
        sim_out.shape = (nf, nyi, nyj)

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 2

    ax = plt.subplot(rows, cols, 1)
    tile(filters, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(ref_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    # tile(sim_out, vmin=0, vmax=1, cols=8, ax=ax)
    tile(sim_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
Ejemplo n.º 10
0
def test_conv_preslice(on_chip, Simulator, plt):
    conv2d = pytest.importorskip("nengo._vendor.npconv2d.conv2d")

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array(
        [
            [1, 2, 1, 2, 0],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 3],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 0],
        ],
        dtype=float,
    )
    image /= image.max()

    image2 = np.column_stack([c * x for c in image.T for x in (1, -1)])

    input_gain = 149.0

    neuron_type = nengo.SpikingRectifiedLinear()
    loihi_neuron = LoihiSpikingRectifiedLinear()
    layer0_neuron = loihi_neuron if on_chip else neuron_type

    y_ref = layer0_neuron.rates(image.ravel(), input_gain, 0)
    y_ref = conv2d.conv2d(y_ref.reshape((1, 5, 5, 1)),
                          kernel.reshape((3, 3, 1, 1)),
                          pad="VALID")
    y_ref = loihi_neuron.rates(y_ref.ravel(), 1.0, 0.0).reshape((3, 3))

    with nengo.Network() as net:
        nengo_loihi.add_params(net)

        u = nengo.Node(image2.ravel())
        a = nengo.Ensemble(
            50,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([input_gain]),
            bias=nengo.dists.Choice([0]),
        )
        net.config[a].on_chip = on_chip

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     (3, 3, 1, 1)))

        b = nengo.Ensemble(
            transform.output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([1]),
            bias=nengo.dists.Choice([0]),
        )

        nengo.Connection(u, a.neurons, synapse=None)
        nengo.Connection(a.neurons[::2], b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    with Simulator(net) as sim:
        assert sim.precompute is True
        sim.run(0.3)

    y_ref = y_ref / input_gain
    y = sim.data[bp][-1].reshape((3, -1)) / input_gain

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
Ejemplo n.º 11
0
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape((28, 28))
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(
            input_shape.size,
            1,
            neuron_type=LoihiSpikingRectifiedLinear(),
            max_rates=nengo.dists.Choice([40 / channels]),
            intercepts=nengo.dists.Choice([0]),
            label="a",
        )
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters,
        )

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(
            output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([gain[0]]),
            bias=nengo.dists.Choice([bias[0]]),
            label="b",
        )
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
    ref_out = sim_nengo.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, target="simreal") as sim_emu:
        sim_emu.run(pres_time)
    emu_out = sim_emu.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, hardware_options={"snip_max_spikes_per_step":
                                            800}) as sim_loihi:
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        emu_out = np.transpose(emu_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), emu_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(emu_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(emu_out, ref_out, atol=10, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
Ejemplo n.º 12
0
def test_conv_overlap_input(Simulator, plt):
    """Tests a fully on-chip conv connection. """
    conv2d = pytest.importorskip("nengo._vendor.npconv2d.conv2d")

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array(
        [
            [1, 2, 1, 2, 0],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 3],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 0],
        ],
        dtype=float,
    )
    image /= image.max()

    input_scale = 119.0
    bias = input_scale * image.ravel()

    neuron_type = nengo.SpikingRectifiedLinear()

    y_ref = LoihiSpikingRectifiedLinear().rates(image.ravel(), input_scale, 0)
    y_ref = conv2d.conv2d(y_ref.reshape((1, 5, 5, 1)),
                          kernel.reshape((3, 3, 1, 1)),
                          pad="VALID")
    y_ref = LoihiSpikingRectifiedLinear().rates(y_ref.ravel(), 1.0,
                                                0.0).reshape((3, 3))

    with nengo.Network() as net:
        a = nengo.Ensemble(
            bias.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([0]),
            bias=bias,
        )

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(4, 5, 1),
                                                 init=kernel.reshape(
                                                     (3, 3, 1, 1)))

        b0 = nengo.Ensemble(
            transform.output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([1]),
            bias=nengo.dists.Choice([0]),
        )
        b1 = nengo.Ensemble(
            transform.output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([1]),
            bias=nengo.dists.Choice([0]),
        )

        nengo.Connection(a.neurons[:20], b0.neurons, transform=transform)
        nengo.Connection(a.neurons[5:], b1.neurons, transform=transform)
        b0p = nengo.Probe(b0.neurons, synapse=nengo.Alpha(0.02))
        b1p = nengo.Probe(b1.neurons, synapse=nengo.Alpha(0.02))

    with Simulator(net) as sim:
        sim.run(0.3)

    y_ref = y_ref / input_scale
    y0 = sim.data[b0p][-1].reshape((2, -1)) / input_scale
    y1 = sim.data[b1p][-1].reshape((2, -1)) / input_scale

    plt.subplot(131)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(132)
    plt.imshow(b0)
    plt.colorbar()
    plt.subplot(133)
    plt.imshow(b1)
    plt.colorbar()

    assert np.allclose(y0, y_ref[:2], atol=0.02, rtol=0.1)
    assert np.allclose(y1, y_ref[1:], atol=0.02, rtol=0.1)