def test_weights_built(self):
        """Test a build using a weights-based solver."""
        # Create the network
        with nengo.Network():
            a = nengo.Ensemble(200, 2)
            b = nengo.Ensemble(400, 2)
            a_b = nengo.Connection(a,
                                   b,
                                   solver=nengo.solvers.Lstsq(weights=True))

        # Create the model and built the pre-synaptic Ensemble
        model = builder.Model()
        model.rng = np.random
        model.seeds[a] = 1
        model.seeds[b] = 2
        model.seeds[a_b] = 3
        ensemble.build_ensemble(model, a)
        ensemble.build_ensemble(model, b)

        # Now build the connection and check that the params seem sensible
        ensemble.build_from_ensemble_connection(model, a_b)

        # Check that the params stored in the model are correct
        params = model.params[a_b]
        assert params.decoders.shape == (200, 400)
    def test_to_global_inhibition(self):
        """Test that the transmission parameters are modified for a global
        inhibition connection.
        """
        # Create the network
        with nengo.Network():
            a = nengo.Ensemble(200, 3)
            b = nengo.Ensemble(300, 1)
            a_b = nengo.Connection(a,
                                   b.neurons,
                                   transform=[[1.0, 0.5, 0.2]] * b.n_neurons)

        # Create the model and built the pre-synaptic Ensemble
        model = builder.Model()
        model.rng = np.random
        model.seeds[a] = 1
        model.seeds[a_b] = 2
        ensemble.build_ensemble(model, a)

        # Now build the connection and check that the params seem sensible
        tparams = ensemble.build_from_ensemble_connection(model, a_b)
        assert tparams.decoders.shape == (1, 200)

        # Check that the params stored in the model are correct
        params = model.params[a_b]
        assert np.all(params.transform == a_b.transform)
    def test_build_ensemble_lif(self, n_neurons, size_in):
        """Test building LIF ensembles."""
        # Create a Nengo ensemble to build
        ens = nengo.Ensemble(n_neurons, size_in, add_to_container=False)

        # Create a model
        model = builder.Model()
        model.seeds[ens] = 1

        # Build the ensemble
        ensemble.build_ensemble(model, ens)

        # Check that the built ensemble was inserted into the params and that
        # the parameters are (loosely) as expected.
        assert model.params[ens].eval_points is not None
        assert (model.params[ens].encoders.shape ==
                model.params[ens].scaled_encoders.shape ==
                (n_neurons, size_in))
        assert (model.params[ens].intercepts.shape ==
                model.params[ens].max_rates.shape ==
                model.params[ens].gain.shape == model.params[ens].bias.shape ==
                (n_neurons, ))

        # Check that a new object was inserted into the objects dictionary
        assert isinstance(model.object_operators[ens], operators.EnsembleLIF)
    def test_arbitrary_neuron_sink(self, source):
        """Test that standard connections to neurons return an appropriate
        sink.

        We have no plan to support arbitrary connections to neurons, but we
        allow them at this stage because they may later become global
        inhibition connections when we optimise out passthrough Nodes.
        """
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(100, 4)

            if source == "neurons":
                a_b = nengo.Connection(a.neurons,
                                       b.neurons,
                                       transform=np.eye(100))
            else:
                a_b = nengo.Connection(a,
                                       b.neurons,
                                       transform=[[1.0, 0.5]] * 99 +
                                       [[0.5, 1.0]])

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        # Get the sink, check that an appropriate target is return
        sink = ensemble.get_neurons_sink(model, a_b)
        assert sink.target.obj is b_ens
        assert sink.target.port is ensemble.EnsembleInputPort.neurons
    def test_standard_build(self):
        """Test relatively standard build."""
        # Create the network
        with nengo.Network():
            a = nengo.Ensemble(200, 3)
            b = nengo.Node(lambda t, x: None, size_in=2)
            a_b = nengo.Connection(a[:2],
                                   b,
                                   transform=np.array([[0.5, 0], [0.0, 0.0]]))

        # Create the model and built the pre-synaptic Ensemble
        model = builder.Model()
        model.rng = np.random
        model.seeds[a] = 1
        model.seeds[a_b] = 2
        ensemble.build_ensemble(model, a)

        # Now build the connection and check that the params seem sensible
        tparams = ensemble.build_from_ensemble_connection(model, a_b)
        assert tparams.decoders.shape == (2, 200)
        assert np.all(tparams.decoders[1, :] == 0.0)

        # Check that the params stored in the model are correct
        params = model.params[a_b]
        assert params.decoders.shape == (200, 2)
        assert np.all(params.transform == a_b.transform)
        assert np.all(params.eval_points == model.params[a].eval_points)
        assert params.solver_info is not None
    def test_probe_input(self):
        """Test probing the input of an Ensemble."""
        with nengo.Network():
            a = nengo.Ensemble(100, 3)
            p = nengo.Probe(a, "input")

        # Create an empty model to build the probe into
        model = builder.Model()
        model.rng = np.random
        model.seeds[p] = 1

        # Build the probe
        ensemble.build_ensemble_probe(model, p)
    def test_probe_spike_slice(self):
        with nengo.Network() as net:
            a = nengo.Ensemble(300, 1)
            p = nengo.Probe(a.neurons[:100], "spikes")

        # Create an empty model to build the probe into
        model = builder.Model()
        model.build(net)

        # Assert that we added the probe to the list of local probes and
        # nothing else
        assert model.object_operators[a].local_probes == [p]
        assert len(model.object_operators) == 1
        assert list(model.connection_map.get_signals()) == []
    def test_probe_output_no_sampling(self):
        """Test that probing the output of an Ensemble generates a new
        connection and a new object.
        """
        with nengo.Network() as net:
            a = nengo.Ensemble(100, 3)
            p = nengo.Probe(a)

        # Create an empty model to build the probe into
        model = builder.Model()
        model.build(net)

        # Check that a new object was added to the model
        vs = model.object_operators[p]
        assert vs.sample_every == 1
    def test_only_bias(self):
        """Build an ensemble with only bias specified."""
        # Create a Nengo ensemble to build
        ens = nengo.Ensemble(1, 1, add_to_container=False)
        ens.bias = np.array([-0.5])

        # Create a model
        model = builder.Model()
        model.seeds[ens] = 1

        # Build the ensemble
        ensemble.build_ensemble(model, ens)

        # Check that parameters are (loosely) as expected.
        assert model.params[ens].bias == ens.bias  # pragma : no cover
Ejemplo n.º 10
0
    def test_normal_source(self):
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(200, 4)

            a_b = nengo.Connection(a, b[1:3])

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        a_ens = operators.EnsembleLIF(a)
        model.object_operators[a] = a_ens

        source = ensemble.get_ensemble_source(model, a_b)
        assert source.target.obj is a_ens
        assert source.target.port is OutputPort.standard
Ejemplo n.º 11
0
    def test_encoder_learnt_sink(self):
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(100, 2)

            a_b = nengo.Connection(a, b)
            a_b.learning_rule_type = nengo.Voja()

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        sink = ensemble.get_ensemble_sink(model, a_b)
        assert sink.target.obj is b_ens
        assert sink.target.port is ensemble.EnsembleInputPort.learnt
def test_neurons_source():
    """Test that neurons sources are sane."""
    with nengo.Network():
        a = nengo.Ensemble(100, 2)
        b = nengo.Ensemble(100, 4)

        a_b = nengo.Connection(a.neurons, b.neurons, transform=np.eye(100))

    # Create a model with the Ensemble for a in it
    model = builder.Model()
    a_ens = operators.EnsembleLIF(a)
    model.object_operators[a] = a_ens

    # Get the source, check that an appropriate target is return
    source = ensemble.get_neurons_source(model, a_b)
    assert source.target.obj is a_ens
    assert source.target.port is ensemble.EnsembleOutputPort.neurons
    def test_refractory_time(self):
        """Check that probing refractory time modifies the local_probes list on
        the operator, but does nothing else.
        """
        with nengo.Network() as net:
            a = nengo.Ensemble(300, 1)
            p = nengo.Probe(a.neurons, "refractory_time")

        # Create an empty model to build the probe into
        model = builder.Model()
        model.build(net)

        # Assert that we added the probe to the list of local probes and
        # nothing else
        assert model.object_operators[a].local_probes == [p]
        assert len(model.object_operators) == 1
        assert len(model.connections_signals) == 0
Ejemplo n.º 14
0
    def test_probe_voja_scaled_encoders(self):
        # Create a network and standard model
        with nengo.Network() as net:
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(100, 2)

            a_b = nengo.Connection(a, b)
            a_b.learning_rule_type = nengo.Voja()
            p = nengo.Probe(a_b.learning_rule, "scaled_encoders")

        # Create an empty model to build the probe into
        model = builder.Model()
        model.build(net)

        # Assert that we added the probe to the list of local probes and
        # nothing else
        assert model.object_operators[b].local_probes == [p]
        assert len(model.object_operators) == 2
    def test_normal_sink_for_process_node(self):
        """Test that sinks for most connections into Ensembles do nothing
        special.
        """
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Node(nengo.processes.WhiteNoise(), size_out=4)
            b = nengo.Ensemble(200, 4)

            a_b = nengo.Connection(a, b)

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        # Get the sink, check that an appropriate target is return
        sink = ensemble.get_ensemble_sink(model, a_b)
        assert sink.target.obj is b_ens
        assert sink.target.port is InputPort.standard
    def test_constant_node_sink_with_slice(self):
        """Test that connections from constant valued Nodes to Ensembles are
        optimised out correctly.
        """
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Node([0.5, 1.0])
            b = nengo.Ensemble(200, 2)

            a_b = nengo.Connection(a[0], b[1])

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        # Check that no sink is created but that the direct input is modified
        assert np.all(b_ens.direct_input == np.zeros(2))
        assert ensemble.get_ensemble_sink(model, a_b) is None
        assert np.all(b_ens.direct_input == [0.0, 0.5])
Ejemplo n.º 17
0
    def test_decoder_learnt_source(self):
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(100, 2)
            e = nengo.Ensemble(100, 2)

            a_b = nengo.Connection(a, b)
            a_b.learning_rule_type = nengo.PES()

            e_l = nengo.Connection(e, a_b.learning_rule)

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        a_ens = operators.EnsembleLIF(a)
        model.object_operators[a] = a_ens

        source = ensemble.get_ensemble_source(model, a_b)
        assert source.target.obj is a_ens
        assert source.target.port is ensemble.EnsembleOutputPort.learnt
    def test_with_encoders_and_gain_bias(self):
        """Test that the encoders we provide are used (albeit scaled)"""
        # Create a Nengo ensemble to build
        ens = nengo.Ensemble(1, 1, add_to_container=False)
        ens.radius = 10.0
        ens.encoders = np.array([[1.0]])
        ens.gain = np.array([0.5])
        ens.bias = np.array([0.0])

        # Create a model
        model = builder.Model()
        model.seeds[ens] = 1

        # Build the ensemble
        ensemble.build_ensemble(model, ens)

        # Check that parameters are (loosely) as expected.
        assert model.params[ens].encoders == ens.encoders
        assert model.params[ens].gain == ens.gain
        assert model.params[ens].bias == ens.bias
        assert model.params[ens].scaled_encoders == ens.encoders * (0.5 / 10)
    def test_probe_output_with_sampling(self, with_slice):
        """Test that probing the output of an Ensemble generates a new
        connection and a new object.
        """
        with nengo.Network() as net:
            a = nengo.Ensemble(100, 3)

            if not with_slice:
                p = nengo.Probe(a, sample_every=0.0023)
            else:
                p = nengo.Probe(a[0:1], sample_every=0.0023)

        # Create an empty model to build the probe into
        model = builder.Model()
        model.build(net)

        # Check that a new connection was added and built
        assert len(list(model.connection_map.get_signals())) == 1

        # Check that a new object was added to the model
        vs = model.object_operators[p]
        assert isinstance(vs, operators.ValueSink)
        assert vs.probe is p
Ejemplo n.º 20
0
    def test_encoder_learning_rule_sink(self):
        """Test that sinks for most connections into Ensembles do nothing
        special.
        """
        # Create a network and standard model
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(100, 2)
            e = nengo.Ensemble(100, 1)

            a_b = nengo.Connection(a, b)
            a_b.learning_rule_type = nengo.Voja()

            e_l = nengo.Connection(e, a_b.learning_rule)

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        # Get the sink, check that an appropriate target is return
        sink = ensemble.get_learning_rule_sink(model, e_l)
        assert sink.target.obj is b_ens
        assert sink.target.port is a_b.learning_rule
    def test_global_inhibition_sink(self):
        """Test that sinks are correctly determined for connections which are
        global inhibition connections.
        """
        # Create a model with a global inhibition connection
        with nengo.Network():
            a = nengo.Ensemble(100, 2)
            b = nengo.Ensemble(200, 4)

            a_b = nengo.Connection(a, b.neurons, transform=[[1.0, 0.5]] * 200)

        # Create a model with the Ensemble for b in it
        model = builder.Model()
        b_ens = operators.EnsembleLIF(b)
        model.object_operators[b] = b_ens

        decs = mock.Mock()
        evals = mock.Mock()
        si = mock.Mock()

        # Get the sink, check that an appropriate target is return
        sink = ensemble.get_neurons_sink(model, a_b)
        assert sink.target.obj is b_ens
        assert sink.target.port is ensemble.EnsembleInputPort.global_inhibition