Ejemplo n.º 1
0
def run(n_neurons=10000, neuron_type=LIF(), t_train=200, t=200, f=DoubleExp(1e-3, 1e-1), dt=0.001, dt_sample=0.003, tt=1.0, seed=0, smooth=30, reg=1e-1, penalty=0, df_evals=20, load_fd=False):

    d_ens = np.zeros((n_neurons, 3))
    f_ens = f

    if load_fd:
        load = np.load(load_fd)
        d_ens = load['d_ens']
        taus_ens = load['taus_ens']
        f_ens = DoubleExp(taus_ens[0], taus_ens[1])
        d_ens_gauss = load['d_ens_gauss']
    else:
        print('Optimizing ens filters and decoders')
        data = go(d_ens, f_ens, neuron_type=neuron_type, n_neurons=n_neurons, L=True, t=t_train, f=f, dt=dt, dt_sample=dt_sample, seed=seed)

        d_ens, f_ens, taus_ens = df_opt(data['x'], data['ens'], f, df_evals=df_evals, reg=reg, penalty=penalty, dt=dt_sample, dt_sample=dt_sample, name='lorenz_%s'%neuron_type)
        all_targets_gauss = gaussian_filter1d(data['x'], sigma=smooth, axis=0)
        all_spikes_gauss = gaussian_filter1d(data['ens'], sigma=smooth, axis=0)
        d_ens_gauss = nengo.solvers.LstsqL2(reg=reg)(all_spikes_gauss, all_targets_gauss)[0]
        np.savez('data/lorenz_%s_fd.npz'%neuron_type, d_ens=d_ens, taus_ens=taus_ens, d_ens_gauss=d_ens_gauss)
    
        f_times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(f_times, f.impulse(len(f_times), dt=0.0001), label=r"$f^x, \tau_1=%.3f, \tau_2=%.3f$"
            %(-1./f.poles[0], -1./f.poles[1]))
        ax.plot(f_times, f_ens.impulse(len(f_times), dt=0.0001), label=r"$f^{ens}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$"
           %(-1./f_ens.poles[0], -1./f_ens.poles[1], np.count_nonzero(d_ens), n_neurons))
        ax.set(xlabel='time (seconds)', ylabel='impulse response', ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig("plots/lorenz_%s_filters_ens.pdf"%neuron_type)

        tar = f.filt(data['x'], dt=dt_sample)
        a_ens = f_ens.filt(data['ens'], dt=dt_sample)
        ens = np.dot(a_ens, d_ens)
        z_tar_peaks, _ = find_peaks(tar[:,2], height=0)  # gives time indices of z-component-peaks
        z_ens_peaks, _ = find_peaks(ens[:,2], height=0)

        fig = plt.figure()    
        ax = fig.add_subplot(121, projection='3d')
        ax2 = fig.add_subplot(122, projection='3d')
        ax.plot(*tar.T, linewidth=0.25)
#             ax.scatter(*tar[z_tar_peaks].T, color='r', s=1)
        ax2.plot(*ens.T, linewidth=0.25)
#             ax2.scatter(*ens[z_ens_peaks].T, color='r', s=1, marker='v')
        ax.set(xlabel="x", ylabel="y", zlabel="z", xlim=((-20, 20)), ylim=((-10, 30)), zlim=((0, 40)))
        ax.xaxis.pane.fill = False
        ax.yaxis.pane.fill = False
        ax.zaxis.pane.fill = False
        ax.xaxis.pane.set_edgecolor('w')
        ax.yaxis.pane.set_edgecolor('w')
        ax.zaxis.pane.set_edgecolor('w')
        ax.grid(False)
        ax2.set(xlabel="x", ylabel="y", zlabel="z", xlim=((-20, 20)), ylim=((-10, 30)), zlim=((0, 40)))
        ax2.xaxis.pane.fill = False
        ax2.yaxis.pane.fill = False
        ax2.zaxis.pane.fill = False
        ax2.xaxis.pane.set_edgecolor('w')
        ax2.yaxis.pane.set_edgecolor('w')
        ax2.zaxis.pane.set_edgecolor('w')
        ax2.grid(False)
        plt.savefig("plots/lorenz_%s_train_3D.pdf"%neuron_type)

        fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
        ax1.plot(tar[:,0], tar[:,1], linestyle="--", linewidth=0.25)
        ax2.plot(tar[:,1], tar[:,2], linestyle="--", linewidth=0.25)
        ax3.plot(tar[:,0], tar[:,2], linestyle="--", linewidth=0.25)
#             ax2.scatter(tar[z_tar_peaks, 1], tar[z_tar_peaks, 2], s=3, color='r')
#             ax3.scatter(tar[z_tar_peaks, 0], tar[z_tar_peaks, 2], s=3, color='g')
        ax1.plot(ens[:,0], ens[:,1], linewidth=0.25)
        ax2.plot(ens[:,1], ens[:,2], linewidth=0.25)
        ax3.plot(ens[:,0], ens[:,2], linewidth=0.25)
#             ax2.scatter(ens[z_ens_peaks, 1], ens[z_ens_peaks, 2], s=3, color='r', marker='v')
#             ax3.scatter(ens[z_ens_peaks, 0], ens[z_ens_peaks, 2], s=3, color='g', marker='v')
        ax1.set(xlabel='x', ylabel='y')
        ax2.set(xlabel='y', ylabel='z')
        ax3.set(xlabel='x', ylabel='z')
        plt.tight_layout()
        plt.savefig("plots/lorenz_%s_train_pairwise.pdf"%neuron_type)
        plt.close('all')

        # Plot tent map and fit the data to a gaussian
        print('Plotting tent map')
        trans = int(tt/dt)
        tar_gauss = gaussian_filter1d(data['x'][trans:], sigma=smooth, axis=0)
        a_ens_gauss = gaussian_filter1d(data['ens'][trans:], sigma=smooth, axis=0)
        ens_gauss = np.dot(a_ens_gauss, d_ens_gauss)
        z_tar_peaks = find_peaks(tar_gauss[:,2], height=0)[0][1:]
        z_tar_values_horz = np.ravel(tar_gauss[z_tar_peaks, 2][:-1])
        z_tar_values_vert = np.ravel(tar_gauss[z_tar_peaks, 2][1:])
        z_ens_peaks = find_peaks(ens_gauss[:,2], height=0)[0][1:]
        z_ens_values_horz = np.ravel(ens_gauss[z_ens_peaks, 2][:-1])
        z_ens_values_vert = np.ravel(ens_gauss[z_ens_peaks, 2][1:])
#         def gaussian(x, mu, sigma, mag):
#             return mag * np.exp(-0.5*(np.square((x-mu)/sigma)))
#         p0 = [36, 2, 40]
#         param_ens, _ = curve_fit(gaussian, z_ens_values_horz, z_ens_values_vert, p0=p0)
#         param_tar, _ = curve_fit(gaussian, z_tar_values_horz, z_tar_values_vert, p0=p0)
#         horzs_tar = np.linspace(np.min(z_tar_values_horz), np.max(z_tar_values_horz), 100)
#         gauss_tar = gaussian(horzs_tar, param_tar[0], param_tar[1], param_tar[2])
#         horzs_ens = np.linspace(np.min(z_ens_values_horz), np.max(z_ens_values_horz), 100)
#         gauss_ens = gaussian(horzs_ens, param_ens[0], param_ens[1], param_ens[2])
#         error = entropy(gauss_ens, gauss_tar)
        fig, ax = plt.subplots()
        ax.scatter(z_tar_values_horz, z_tar_values_vert, alpha=0.5, color='r', label='target')
#         ax.plot(horzs_tar, gauss_tar, color='r', linestyle='--', label='target fit')
        ax.scatter(z_ens_values_horz, z_ens_values_vert, alpha=0.5, color='b', label='ens')
#         ax.plot(horzs_ens, gauss_ens, color='b', linestyle='--', label='ens fit')
        ax.set(xlabel=r'$\mathrm{max}_n (z)$', ylabel=r'$\mathrm{max}_{n+1} (z)$')#, title='error=%.5f'%error)
        plt.legend(loc='upper right')
        plt.savefig("plots/lorenz_%s_train_tent.pdf"%(neuron_type))        
        
    print("testing")
    data = go(d_ens, f_ens, neuron_type=neuron_type, n_neurons=n_neurons, L=False, t=t, f=f, dt=dt, dt_sample=dt_sample, seed=seed)

    tar = f.filt(data['x'], dt=dt_sample)
    a_ens = f_ens.filt(data['ens'], dt=dt_sample)
    ens = np.dot(a_ens, d_ens)
    z_tar_peaks, _ = find_peaks(tar[:,2], height=0)  # gives time indices of z-component-peaks
    z_ens_peaks, _ = find_peaks(ens[:,2], height=0)

    fig = plt.figure()    
    ax = fig.add_subplot(121, projection='3d')
    ax2 = fig.add_subplot(122, projection='3d')
    ax.plot(*tar.T, linewidth=0.25)
#             ax.scatter(*tar[z_tar_peaks].T, color='r', s=1)
    ax2.plot(*ens.T, linewidth=0.25)
#             ax2.scatter(*ens[z_ens_peaks].T, color='r', s=1, marker='v')
    ax.set(xlabel="x", ylabel="y", zlabel="z", xlim=((-20, 20)), ylim=((-10, 30)), zlim=((0, 40)))
    ax.xaxis.pane.fill = False
    ax.yaxis.pane.fill = False
    ax.zaxis.pane.fill = False
    ax.xaxis.pane.set_edgecolor('w')
    ax.yaxis.pane.set_edgecolor('w')
    ax.zaxis.pane.set_edgecolor('w')
    ax.grid(False)
    ax2.set(xlabel="x", ylabel="y", zlabel="z", xlim=((-20, 20)), ylim=((-10, 30)), zlim=((0, 40)))
    ax2.xaxis.pane.fill = False
    ax2.yaxis.pane.fill = False
    ax2.zaxis.pane.fill = False
    ax2.xaxis.pane.set_edgecolor('w')
    ax2.yaxis.pane.set_edgecolor('w')
    ax2.zaxis.pane.set_edgecolor('w')
    ax2.grid(False)
    plt.savefig("plots/lorenz_%s_test_3D.pdf"%neuron_type)

    fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
    ax1.plot(tar[:,0], tar[:,1], linestyle="--", linewidth=0.25)
    ax2.plot(tar[:,1], tar[:,2], linestyle="--", linewidth=0.25)
    ax3.plot(tar[:,0], tar[:,2], linestyle="--", linewidth=0.25)
#             ax2.scatter(tar[z_tar_peaks, 1], tar[z_tar_peaks, 2], s=3, color='r')
#             ax3.scatter(tar[z_tar_peaks, 0], tar[z_tar_peaks, 2], s=3, color='g')
    ax1.plot(ens[:,0], ens[:,1], linewidth=0.25)
    ax2.plot(ens[:,1], ens[:,2], linewidth=0.25)
    ax3.plot(ens[:,0], ens[:,2], linewidth=0.25)
#             ax2.scatter(ens[z_ens_peaks, 1], ens[z_ens_peaks, 2], s=3, color='r', marker='v')
#             ax3.scatter(ens[z_ens_peaks, 0], ens[z_ens_peaks, 2], s=3, color='g', marker='v')
    ax1.set(xlabel='x', ylabel='y')
    ax2.set(xlabel='y', ylabel='z')
    ax3.set(xlabel='x', ylabel='z')
    plt.tight_layout()
    plt.savefig("plots/lorenz_%s_test_pairwise.pdf"%neuron_type)
    plt.close('all')

    # Plot tent map and fit the data to a gaussian
    print('Plotting tent map')
    trans = int(tt/dt)
    tar_gauss = gaussian_filter1d(data['x'][trans:], sigma=smooth, axis=0)
    a_ens_gauss = gaussian_filter1d(data['ens'][trans:], sigma=smooth, axis=0)
    ens_gauss = np.dot(a_ens_gauss, d_ens_gauss)
    z_tar_peaks = find_peaks(tar_gauss[:,2], height=0)[0][1:]
    z_tar_values_horz = np.ravel(tar_gauss[z_tar_peaks, 2][:-1])
    z_tar_values_vert = np.ravel(tar_gauss[z_tar_peaks, 2][1:])
    z_ens_peaks = find_peaks(ens_gauss[:,2], height=0)[0][1:]
    z_ens_values_horz = np.ravel(ens_gauss[z_ens_peaks, 2][:-1])
    z_ens_values_vert = np.ravel(ens_gauss[z_ens_peaks, 2][1:])
#     def gaussian(x, mu, sigma, mag):
#         return mag * np.exp(-0.5*(np.square((x-mu)/sigma)))
#     p0 = [36, 2, 40]
#     param_ens, _ = curve_fit(gaussian, z_ens_values_horz, z_ens_values_vert, p0=p0)
#     param_tar, _ = curve_fit(gaussian, z_tar_values_horz, z_tar_values_vert, p0=p0)
#     horzs_tar = np.linspace(np.min(z_tar_values_horz), np.max(z_tar_values_horz), 100)
#     gauss_tar = gaussian(horzs_tar, param_tar[0], param_tar[1], param_tar[2])
#     horzs_ens = np.linspace(np.min(z_ens_values_horz), np.max(z_ens_values_horz), 100)
#     gauss_ens = gaussian(horzs_ens, param_ens[0], param_ens[1], param_ens[2])
#     error = entropy(gauss_ens, gauss_tar)
    fig, ax = plt.subplots()
    ax.scatter(z_tar_values_horz, z_tar_values_vert, alpha=0.5, color='r', label='target')
#     ax.plot(horzs_tar, gauss_tar, color='r', linestyle='--', label='target fit')
    ax.scatter(z_ens_values_horz, z_ens_values_vert, alpha=0.5, color='b', label='ens')
#     ax.plot(horzs_ens, gauss_ens, color='b', linestyle='--', label='ens fit')
    ax.set(xlabel=r'$\mathrm{max}_n (z)$', ylabel=r'$\mathrm{max}_{n+1} (z)$')#, title='error=%.5f'%error)
    plt.legend(loc='upper right')
    plt.savefig("plots/lorenz_%s_test_tent.pdf"%(neuron_type))        
Ejemplo n.º 2
0
def run(n_neurons=30,
        t=30,
        t_test=10,
        n_encodes=20,
        dt=0.001,
        n_tests=10,
        neuron_type=LIF(),
        f=DoubleExp(1e-3, 3e-2),
        f_out=DoubleExp(1e-3, 1e-1),
        reg=0,
        penalty=1.0,
        load_w=None,
        load_df=None):

    d_ens = np.zeros((n_neurons, 1))
    f_ens = f
    f_smooth = DoubleExp(1e-2, 2e-1)
    w_ens = None
    e_ens = None
    w_ens2 = None
    e_ens2 = None
    print('\nNeuron Type: %s' % neuron_type)

    if isinstance(neuron_type, DurstewitzNeuron):
        if load_w:
            w_ens = np.load(load_w)['w_ens']
        else:
            print('Optimizing ens1 encoders')
            for nenc in range(n_encodes):
                print("encoding trial %s" % nenc)
                stim_func = make_normed_flipped(value=1.2,
                                                t=t,
                                                dt=dt,
                                                f=f,
                                                seed=nenc)
                data = go(d_ens,
                          f_ens,
                          n_neurons=n_neurons,
                          t=t,
                          f=f,
                          dt=0.001,
                          stim_func=stim_func,
                          neuron_type=neuron_type,
                          w_ens=w_ens,
                          e_ens=e_ens,
                          L=True)
                e_ens = data['e_ens']
                w_ens = data['w_ens']
                np.savez('data/identity_w.npz', e_ens=e_ens, w_ens=w_ens)

                fig, ax = plt.subplots()
                sns.distplot(np.ravel(w_ens), ax=ax, kde=False)
                ax.set(xlabel='weights', ylabel='frequency')
                plt.savefig("plots/tuning/identity_%s_w_ens_nenc_%s.pdf" %
                            (neuron_type, nenc))

                a_ens = f_smooth.filt(data['ens'], dt=dt)
                a_supv = f_smooth.filt(data['supv'], dt=dt)
                for n in range(n_neurons):
                    fig, ax = plt.subplots(1, 1)
                    ax.plot(data['times'],
                            a_supv[:, n],
                            alpha=0.5,
                            label='supv')
                    ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                    ax.set(ylim=((0, 40)))
                    plt.legend()
                    plt.savefig(
                        'plots/tuning/identity_ens_nenc_%s_activity_%s.pdf' %
                        (nenc, n))
                    plt.close('all')

    if load_df:
        load = np.load(load_df)
        d_ens = load['d_ens']
        d_out1 = load['d_out1']
        taus_ens = load['taus_ens']
        taus_out1 = load['taus_out1']
        f_ens = DoubleExp(taus_ens[0], taus_ens[1])
        f_out1 = DoubleExp(taus_out1[0], taus_out1[1])
    else:
        print('Optimizing ens1 filters and decoders')
        stim_func = make_normed_flipped(value=1.0, t=t, dt=dt, f=f)
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  stim_func=stim_func,
                  w_ens=w_ens)
        d_ens, f_ens, taus_ens = df_opt(data['x'],
                                        data['ens'],
                                        f,
                                        dt=dt,
                                        reg=reg,
                                        penalty=penalty,
                                        name='identity_%s' % neuron_type)
        d_out1, f_out1, taus_out1 = df_opt(data['x'],
                                           data['ens'],
                                           f_out,
                                           dt=dt,
                                           reg=0,
                                           penalty=0,
                                           name='identity_%s' % neuron_type)
        np.savez('data/identity_%s_df.npz' % neuron_type,
                 d_ens=d_ens,
                 taus_ens=taus_ens,
                 d_out1=d_out1,
                 taus_out1=taus_out1)

        times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(times,
                f.impulse(len(times), dt=0.0001),
                label=r"$f^x, \tau_1=%.3f, \tau_2=%.3f$" %
                (-1. / f.poles[0], -1. / f.poles[1]))
        ax.plot(times,
                f_ens.impulse(len(times), dt=0.0001),
                label=r"$f^{ens}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$" %
                (-1. / f_ens.poles[0], -1. / f_ens.poles[1],
                 np.count_nonzero(d_ens), n_neurons))
        ax.set(xlabel='time (seconds)',
               ylabel='impulse response',
               ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig("plots/identity_%s_filters_ens.pdf" % neuron_type)

        times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(times,
                f_out.impulse(len(times), dt=0.0001),
                label=r"$f^{out}, \tau=%.3f, \tau_2=%.3f$" %
                (-1. / f_out.poles[0], -1. / f_out.poles[1]))
        ax.plot(times,
                f_out1.impulse(len(times), dt=0.0001),
                label=r"$f^{out1}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$" %
                (-1. / f_out1.poles[0], -1. / f_out1.poles[1],
                 np.count_nonzero(d_out1), n_neurons))
        ax.set(xlabel='time (seconds)',
               ylabel='impulse response',
               ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig("plots/identity_%s_filters_out1.pdf" % neuron_type)

        a_ens = f_out1.filt(data['ens'], dt=dt)
        x = f_out.filt(data['x'], dt=dt)
        xhat_ens = np.dot(a_ens, d_out1)
        rmse_ens = rmse(xhat_ens, x)
        fig, ax = plt.subplots()
        ax.plot(data['times'], x, linestyle="--", label='x')
        ax.plot(data['times'], xhat_ens, label='ens, rmse=%.3f' % rmse_ens)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="train ens1")
        plt.legend(loc='upper right')
        plt.savefig("plots/identity_%s_ens1_train.pdf" % neuron_type)

    if isinstance(neuron_type, DurstewitzNeuron):
        if load_w:
            w_ens2 = np.load(load_w)['w_ens2']
        else:
            print('Optimizing ens2 encoders')
            for nenc in range(n_encodes):
                print("encoding trial %s" % nenc)
                stim_func = make_normed_flipped(value=1.2,
                                                t=t,
                                                dt=dt,
                                                f=f,
                                                seed=nenc)
                data = go(d_ens,
                          f_ens,
                          n_neurons=n_neurons,
                          t=t,
                          f=f,
                          f_smooth=f_smooth,
                          neuron_type=neuron_type,
                          stim_func=stim_func,
                          w_ens=w_ens,
                          w_ens2=w_ens2,
                          e_ens2=e_ens2,
                          L2=True)
                w_ens2 = data['w_ens2']
                e_ens2 = data['e_ens2']

                fig, ax = plt.subplots()
                sns.distplot(np.ravel(w_ens2), ax=ax)
                ax.set(xlabel='weights', ylabel='frequency')
                plt.savefig("plots/tuning/identity_%s_w_ens2_nenc_%s.pdf" %
                            (neuron_type, nenc))
                np.savez('data/identity_w.npz',
                         w_ens=w_ens,
                         w_ens2=w_ens2,
                         e_ens=e_ens,
                         e_ens2=e_ens2)

                a_ens = f_smooth.filt(data['ens2'], dt=dt)
                a_supv = f_smooth.filt(data['supv2'], dt=dt)
                for n in range(n_neurons):
                    fig, ax = plt.subplots(1, 1)
                    ax.plot(data['times'],
                            a_supv[:, n],
                            alpha=0.5,
                            label='supv2')
                    ax.plot(data['times'],
                            a_ens[:, n],
                            alpha=0.5,
                            label='ens2')
                    ax.set(ylim=((0, 40)))
                    plt.legend()
                    plt.savefig(
                        'plots/tuning/identity_ens2_nenc_%s_activity_%s.pdf' %
                        (nenc, n))
                    plt.close('all')

    if load_df:
        load = np.load(load_df)
        d_out2 = load['d_out2']
        taus_out2 = load['taus_out2']
        f_out2 = DoubleExp(taus_out2[0], taus_out2[1])
    else:
        print('Optimizing ens2 filters and decoders')
        stim_func = make_normed_flipped(value=1.0, t=t, dt=dt, f=f)
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  stim_func=stim_func,
                  w_ens=w_ens,
                  w_ens2=w_ens2)
        d_out2, f_out2, taus_out2 = df_opt(data['x2'],
                                           data['ens2'],
                                           f_out,
                                           dt=dt,
                                           reg=0,
                                           penalty=0,
                                           name='identity_%s' % neuron_type)
        np.savez('data/identity_%s_df.npz' % neuron_type,
                 d_ens=d_ens,
                 taus_ens=taus_ens,
                 d_out1=d_out1,
                 taus_out1=taus_out1,
                 d_out2=d_out2,
                 taus_out2=taus_out2)

        times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(times,
                f_out.impulse(len(times), dt=0.0001),
                label=r"$f^{out}, \tau=%.3f, \tau_2=%.3f$" %
                (-1. / f_out.poles[0], -1. / f_out.poles[1]))
        ax.plot(times,
                f_out2.impulse(len(times), dt=0.0001),
                label=r"$f^{out2}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$" %
                (-1. / f_out2.poles[0], -1. / f_out2.poles[1],
                 np.count_nonzero(d_out2), n_neurons))
        ax.set(xlabel='time (seconds)',
               ylabel='impulse response',
               ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig("plots/identity_%s_filters_out2.pdf" % neuron_type)

        fig, ax = plt.subplots()
        sns.distplot(np.ravel(d_out2))
        ax.set(xlabel='decoders', ylabel='frequency')
        plt.savefig("plots/identity_%s_d_out2.pdf" % neuron_type)

        a_ens2 = f_out2.filt(data['ens2'], dt=dt)
        x2 = f_out.filt(data['x2'], dt=dt)
        xhat_ens2 = np.dot(a_ens2, d_out2)
        rmse_ens2 = rmse(xhat_ens2, x2)

        fig, ax = plt.subplots()
        ax.plot(data['times'], x2, linestyle="--", label='x')
        ax.plot(data['times'], xhat_ens2, label='ens2, rmse=%.3f' % rmse_ens2)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="train ens2")
        plt.legend(loc='upper right')
        plt.savefig("plots/identity_%s_ens2_train.pdf" % neuron_type)

    rmses_ens = np.zeros((n_tests))
    rmses_ens2 = np.zeros((n_tests))
    for test in range(n_tests):
        print('test %s' % test)
        stim_func = make_normed_flipped(value=1.0,
                                        t=t_test,
                                        dt=dt,
                                        f=f,
                                        seed=100 + test)
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t_test,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  stim_func=stim_func,
                  w_ens=w_ens,
                  w_ens2=w_ens2)

        a_ens = f_out1.filt(data['ens'], dt=dt)
        x = f_out.filt(data['x'], dt=dt)
        xhat_ens = np.dot(a_ens, d_ens)
        rmse_ens = rmse(xhat_ens, x)
        a_ens2 = f_out2.filt(data['ens2'], dt=dt)
        x2 = f_out.filt(data['x2'], dt=dt)
        xhat_ens2 = np.dot(a_ens2, d_out2)
        rmse_ens2 = rmse(xhat_ens2, x2)
        rmses_ens[test] = rmse_ens
        rmses_ens2[test] = rmse_ens2

        fig, ax = plt.subplots()
        ax.plot(data['times'], x, linestyle="--", label='x')
        ax.plot(data['times'], xhat_ens, label='ens, rmse=%.3f' % rmse_ens)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="test ens1")
        plt.legend(loc='upper right')
        plt.savefig("plots/identity_%s_ens1_test_%s.pdf" % (neuron_type, test))

        fig, ax = plt.subplots()
        ax.plot(data['times'], x2, linestyle="--", label='x')
        ax.plot(data['times'], xhat_ens2, label='ens2, rmse=%.3f' % rmse_ens2)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="test ens2")
        plt.legend(loc='upper right')
        plt.savefig("plots/identity_%s_ens2_test_%s.pdf" % (neuron_type, test))
        plt.close('all')

    mean_ens = np.mean(rmses_ens)
    mean_ens2 = np.mean(rmses_ens2)
    CI_ens = sns.utils.ci(rmses_ens)
    CI_ens2 = sns.utils.ci(rmses_ens2)

    fig, ax = plt.subplots()
    sns.barplot(data=rmses_ens2)
    ax.set(ylabel='RMSE',
           title="mean=%.3f, CI=%.3f-%.3f" %
           (mean_ens2, CI_ens2[0], CI_ens2[1]))
    plt.xticks()
    plt.savefig("plots/identity_%s_rmse.pdf" % neuron_type)

    print('rmses: ', rmses_ens, rmses_ens2)
    print('means: ', mean_ens, mean_ens2)
    print('confidence intervals: ', CI_ens, CI_ens2)
    np.savez('data/identity_%s_results.npz' % neuron_type,
             rmses_ens=rmses_ens,
             rmses_ens2=rmses_ens2)
    return rmses_ens2
Ejemplo n.º 3
0
def run(n_neurons=100,
        t=20,
        t_test=10,
        t_enc=30,
        dt=0.001,
        f=DoubleExp(1e-2, 2e-1),
        penalty=0,
        reg=1e-1,
        freq=1,
        tt=5.0,
        tt_test=5.0,
        neuron_type=LIF(),
        load_fd=False,
        load_w=None,
        supervised=False):

    d_ens = np.zeros((n_neurons, 2))
    f_ens = f
    w_ff = None
    w_fb = None
    e_ff = None
    e_fb = None
    f_smooth = DoubleExp(1e-2, 2e-1)
    print('Neuron Type: %s' % neuron_type)

    if isinstance(neuron_type, DurstewitzNeuron):
        if load_w:
            w_ff = np.load(load_w)['w_ff']
            e_ff = np.load(load_w)['e_ff']
        else:
            print('optimizing encoders from pre to ens')
            data = go(d_ens,
                      f_ens,
                      n_neurons=n_neurons,
                      t=t_enc + tt,
                      f=f,
                      dt=dt,
                      neuron_type=neuron_type,
                      w_ff=w_ff,
                      e_ff=e_ff,
                      L_ff=True)
            w_ff = data['w_ff']
            e_ff = data['e_ff']
            np.savez('data/oscillate_w.npz', w_ff=w_ff, e_ff=e_ff)

            fig, ax = plt.subplots()
            sns.distplot(np.ravel(w_ff), ax=ax, kde=False)
            ax.set(xlabel='weights', ylabel='frequency')
            plt.savefig("plots/tuning/oscillate_%s_w_ff.pdf" % (neuron_type))

            a_ens = f_smooth.filt(data['ens'], dt=dt)
            a_supv = f_smooth.filt(data['supv'], dt=dt)
            for n in range(n_neurons):
                fig, ax = plt.subplots(1, 1)
                ax.plot(data['times'], a_supv[:, n], alpha=0.5, label='supv')
                ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                ax.set(ylim=((0, 40)))
                plt.legend()
                plt.savefig('plots/tuning/oscillate_pre_ens_activity_%s.pdf' %
                            (n))
                plt.close('all')

    if load_fd:
        load = np.load(load_fd)
        d_ens = load['d_ens']
        taus_ens = load['taus_ens']
        f_ens = DoubleExp(taus_ens[0], taus_ens[1])
    else:
        print('gathering filter/decoder training data for ens')
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t + tt,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  w_ff=w_ff,
                  L_fd=True)
        trans = int(tt / dt)
        d_ens, f_ens, taus_ens = df_opt(data['u'][trans:],
                                        data['ens'][trans:],
                                        f,
                                        dt=dt,
                                        name='oscillate_%s' % neuron_type,
                                        reg=reg,
                                        penalty=penalty)
        np.savez('data/oscillate_%s_fd.npz' % neuron_type,
                 d_ens=d_ens,
                 taus_ens=taus_ens)

        times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(times,
                f.impulse(len(times), dt=0.0001),
                label=r"$f^x, \tau_1=%.3f, \tau_2=%.3f$" %
                (-1. / f.poles[0], -1. / f.poles[1]))
        ax.plot(times,
                f_ens.impulse(len(times), dt=0.0001),
                label=r"$f^{ens}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$" %
                (-1. / f_ens.poles[0], -1. / f_ens.poles[1],
                 np.count_nonzero(d_ens), n_neurons))
        ax.set(xlabel='time (seconds)',
               ylabel='impulse response',
               ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig("plots/oscillate_%s_filters_ens.pdf" % neuron_type)

        a_ens = f_ens.filt(data['ens'], dt=dt)
        x = f.filt(data['u'], dt=dt)
        xhat_ens = np.dot(a_ens, d_ens)
        rmse_ens = rmse(xhat_ens, x)
        fig, ax = plt.subplots()
        ax.plot(data['times'], x, linestyle="--", label='x')
        ax.plot(data['times'], xhat_ens, label='ens, rmse=%.3f' % rmse_ens)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="pre_ens")
        plt.legend(loc='upper right')
        plt.savefig("plots/oscillate_%s_pre_ens_train.pdf" % neuron_type)

    if isinstance(neuron_type, DurstewitzNeuron):
        if load_w:
            w_fb = np.load(load_w)['w_fb']
            e_fb = np.load(load_w)['e_fb']
        else:
            print('optimizing encoders from supv to ens')
            data = go(d_ens,
                      f_ens,
                      n_neurons=n_neurons,
                      t=t_enc + tt,
                      f=f,
                      dt=dt,
                      neuron_type=neuron_type,
                      w_ff=w_ff,
                      w_fb=w_fb,
                      e_fb=e_fb,
                      L_fb=True)
            w_fb = data['w_fb']
            e_fb = data['e_fb']
            np.savez('data/oscillate_w.npz',
                     w_ff=w_ff,
                     e_ff=e_ff,
                     w_fb=w_fb,
                     e_fb=e_fb)

            fig, ax = plt.subplots()
            sns.distplot(np.ravel(w_fb), ax=ax, kde=False)
            ax.set(xlabel='weights', ylabel='frequency')
            plt.savefig("plots/tuning/oscillate_%s_w_fb.pdf" % (neuron_type))

            a_ens = f_smooth.filt(data['ens'], dt=dt)
            a_supv = f_smooth.filt(data['supv'], dt=dt)
            #             a_supv2 = f_smooth.filt(data['supv2'], dt=dt)
            for n in range(n_neurons):
                fig, ax = plt.subplots(1, 1)
                ax.plot(data['times'], a_supv[:, n], alpha=0.5, label='supv')
                #                 ax.plot(data['times'], a_supv2[:,n], alpha=0.5, label='supv2')
                ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                ax.set(ylim=((0, 40)))
                plt.legend()
                plt.savefig('plots/tuning/oscillate_supv_ens_activity_%s.pdf' %
                            (n))
                plt.close('all')

    print("Testing")
    if supervised:
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t_test + tt_test,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  w_ff=w_ff,
                  w_fb=w_fb,
                  supervised=True)

        a_ens = f_ens.filt(data['ens'], dt=dt)
        a_supv = f_ens.filt(data['supv'], dt=dt)
        #         a_supv2 = f_ens.filt(data['supv2'], dt=dt)
        xhat_ens_0 = np.dot(a_ens, d_ens)[:, 0]
        xhat_ens_1 = np.dot(a_ens, d_ens)[:, 1]
        xhat_supv_0 = np.dot(a_supv, d_ens)[:, 0]
        xhat_supv_1 = np.dot(a_supv, d_ens)[:, 1]
        #         xhat_supv2_0 = np.dot(a_supv2, d_ens)[:,0]
        #         xhat_supv2_1 = np.dot(a_supv2, d_ens)[:,1]
        x_0 = f.filt(data['u'], dt=dt)[:, 0]
        x_1 = f.filt(data['u'], dt=dt)[:, 1]
        x2_0 = f.filt(x_0, dt=dt)
        x2_1 = f.filt(x_1, dt=dt)
        times = data['times']

        fig, ax = plt.subplots()
        ax.plot(times, x_0, linestyle="--", label='x_0')
        ax.plot(times, x2_0, linestyle="--", label='x2_0')
        ax.plot(times, xhat_supv_0, label='supv')
        ax.plot(times, xhat_ens_0, label='ens')
        #         ax.plot(times, xhat_supv2_0, label='supv2')
        ax.set(xlim=((0, t_test)),
               ylim=((-1, 1)),
               xlabel='time (s)',
               ylabel=r'$\mathbf{x}$')
        plt.legend(loc='upper right')
        plt.savefig("plots/oscillate_%s_supervised_0.pdf" % neuron_type)

        fig, ax = plt.subplots()
        ax.plot(times, x_1, linestyle="--", label='x_1')
        ax.plot(times, x2_1, linestyle="--", label='x2_1')
        ax.plot(times, xhat_supv_1, label='supv')
        ax.plot(times, xhat_ens_1, label='ens')
        #         ax.plot(times, xhat_supv2_1, label='supv2')
        ax.set(xlim=((0, t_test)),
               ylim=((-1, 1)),
               xlabel='time (s)',
               ylabel=r'$\mathbf{x}$')
        plt.legend(loc='upper right')
        plt.savefig("plots/oscillate_%s_supervised_1.pdf" % neuron_type)

    else:
        data = go(d_ens,
                  f_ens,
                  n_neurons=n_neurons,
                  t=t_test + tt_test,
                  f=f,
                  dt=dt,
                  neuron_type=neuron_type,
                  w_ff=w_ff,
                  w_fb=w_fb)

        a_ens = f_ens.filt(data['ens'], dt=dt)
        xhat_ens_0 = np.dot(a_ens, d_ens)[:, 0]
        xhat_ens_1 = np.dot(a_ens, d_ens)[:, 1]
        x_0 = f.filt(data['u'], dt=dt)[:, 0]
        x_1 = f.filt(data['u'], dt=dt)[:, 1]
        x2_0 = f.filt(x_0, dt=dt)
        x2_1 = f.filt(x_1, dt=dt)
        times = data['times']

        #         fig, ax = plt.subplots()
        #         ax.plot(times, x_0, linestyle="--", label='x0')
        # #         ax.plot(times, sinusoid_0, label='best fit sinusoid_0')
        #         ax.plot(times, xhat_ens_0, label='ens')
        #         ax.set(xlim=((0, t_test)), ylim=((-1, 1)), xlabel='time (s)', ylabel=r'$\mathbf{x}$')
        #         plt.legend(loc='upper right')
        #         plt.savefig("plots/oscillate_%s_test_0.pdf"%neuron_type)
        #         fig, ax = plt.subplots()
        #         ax.plot(times, x_1, linestyle="--", label='x1')
        # #         ax.plot(times, sinusoid_1, label='best fit sinusoid_1')
        #         ax.plot(times, xhat_ens_1, label='ens')
        #         ax.set(xlim=((0, t_test)), ylim=((-1, 1)), xlabel='time (s)', ylabel=r'$\mathbf{x}$')
        #         plt.legend(loc='upper right')
        #         plt.savefig("plots/oscillate_%s_test_1.pdf"%neuron_type)

        # curve fit to a sinusoid of arbitrary frequency, phase, magnitude
        print('Curve fitting')
        trans = int(tt_test / dt)
        step = int(0.001 / dt)

        def sinusoid(t, freq, phase, mag, dt=dt):  # mag
            return f.filt(mag *
                          np.sin(t * 2 * np.pi * freq + 2 * np.pi * phase),
                          dt=dt)

        p0 = [1, 0, 1]
        param_0, _ = curve_fit(sinusoid,
                               times[trans:],
                               xhat_ens_0[trans:],
                               p0=p0)
        param_1, _ = curve_fit(sinusoid,
                               times[trans:],
                               xhat_ens_1[trans:],
                               p0=p0)
        print('param0', param_0)
        print('param1', param_1)
        sinusoid_0 = sinusoid(times, param_0[0], param_0[1], param_0[2])
        sinusoid_1 = sinusoid(times, param_1[0], param_1[1], param_1[2])

        # error is rmse of xhat and best fit sinusoid times freq error of best fit sinusoid to x
        freq_error_0 = np.abs(freq - param_0[1])
        freq_error_1 = np.abs(freq - param_1[1])
        rmse_0 = rmse(xhat_ens_0[trans::step], sinusoid_0[trans::step])
        rmse_1 = rmse(xhat_ens_1[trans::step], sinusoid_1[trans::step])
        scaled_rmse_0 = (1 + freq_error_0) * rmse_0
        scaled_rmse_1 = (1 + freq_error_1) * rmse_1

        fig, ax = plt.subplots()
        ax.plot(times, x_0, linestyle="--", label='x0')
        ax.plot(times, sinusoid_0, label='best fit sinusoid_0')
        ax.plot(times,
                xhat_ens_0,
                label='ens, scaled rmse=%.3f' % scaled_rmse_0)
        ax.axvline(tt_test, label=r"$t_{transient}$")
        ax.set(ylim=((-1, 1)), xlabel='time (s)', ylabel=r'$\mathbf{x}$')
        plt.legend(loc='upper right')
        plt.savefig("plots/oscillate_%s_test_0.pdf" % neuron_type)

        fig, ax = plt.subplots()
        ax.plot(times, x_1, linestyle="--", label='x1')
        ax.plot(times, sinusoid_1, label='best fit sinusoid_1')
        ax.plot(times,
                xhat_ens_1,
                label='ens, scaled rmse=%.3f' % scaled_rmse_1)
        ax.axvline(tt_test, label=r"$t_{transient}$")
        ax.set(ylim=((-1, 1)), xlabel='time (s)', ylabel=r'$\mathbf{x}$')
        plt.legend(loc='upper right')
        plt.savefig("plots/oscillate_%s_test_1.pdf" % neuron_type)

        print('scaled rmses: ', scaled_rmse_0, scaled_rmse_1)
        mean = np.mean([scaled_rmse_0, scaled_rmse_1])
        fig, ax = plt.subplots()
        sns.barplot(data=np.array([mean]))
        ax.set(ylabel='Scaled RMSE', title="mean=%.3f" % mean)
        plt.xticks()
        plt.savefig("plots/oscillate_%s_scaled_rmse.pdf" % neuron_type)
        np.savez('data/oscillate_%s_results.npz' % neuron_type,
                 scaled_rmse_0=scaled_rmse_0,
                 scaled_rmse_1=scaled_rmse_1)
        return mean
Ejemplo n.º 4
0
def run(n_neurons=100,
        t=10,
        t_flat=3,
        t_test=10,
        n_train=20,
        n_test=10,
        reg=1e-1,
        penalty=0.0,
        df_evals=100,
        T=0.2,
        dt=0.001,
        neuron_type=LIF(),
        f=DoubleExp(1e-2, 2e-1),
        f_smooth=DoubleExp(1e-2, 2e-1),
        w_file="data/memory_w.npz",
        fd_file="data/memory_DurstewitzNeuron()_fd.npz",
        load_w_x=False,
        load_w_u=False,
        load_w_fb=False,
        load_fd=False,
        supervised=False):

    d_ens = np.zeros((n_neurons, 1))
    f_ens = f
    w_u = None
    w_x = None
    w_fb = None
    DA = None

    if isinstance(neuron_type, DurstewitzNeuron):
        DA = neuron_type.DA
        if load_w_x:
            w_x = np.load(w_file)['w_x']
            e_x = np.load(w_file)['e_x']
        else:
            print('optimizing encoders from pre_x into ens (white noise)')
            e_x = None
            w_x = None
            for nenc in range(n_train):
                print("encoding trial %s" % nenc)
                u = make_signal(t=t, t_flat=t_flat, f=f, normed='x', seed=nenc)
                t_sim = len(u) * dt - dt
                stim_func = lambda t: u[int(t / dt)]
                data = go(d_ens,
                          f_ens,
                          n_neurons=n_neurons,
                          t=t_sim,
                          f=f,
                          dt=dt,
                          neuron_type=neuron_type,
                          stim_func=stim_func,
                          T=T,
                          e_x=e_x,
                          w_x=w_x,
                          L_x=True)
                w_x = data['w_x']
                e_x = data['e_x']
                np.savez('data/memory_DA%s_w.npz' % DA, w_x=w_x, e_x=e_x)
                a_ens = f_smooth.filt(data['ens'], dt=dt)
                a_supv = f_smooth.filt(data['supv'], dt=dt)
                for n in range(n_neurons):
                    fig, ax = plt.subplots(1, 1)
                    ax.plot(data['times'],
                            a_supv[:, n],
                            alpha=0.5,
                            label='supv')
                    ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                    ax.set(ylabel='firing rate', ylim=((0, 40)))
                    plt.legend()
                    plt.savefig(
                        'plots/tuning/memory_x_DA%s_nenc_%s_activity_%s.pdf' %
                        (DA, nenc, n))
                    plt.close('all')

        if load_w_u:
            w_u = np.load(w_file)['w_u']
            e_u = np.load(w_file)['e_u']
        else:
            print('optimizing encoders from pre_u into ens (white noise)')
            e_u = None
            w_u = None
            bases = np.linspace(-0.5, 0.5, n_train)
            for nenc in range(n_train):
                print("encoding trial %s" % nenc)
                u = make_signal(t=t, t_flat=t_flat, f=f, normed='x', seed=nenc)
                t_sim = len(u) * dt - dt
                stim_func = lambda t: u[int(t / dt)]
                stim_func_base = lambda t: bases[nenc]
                data = go(d_ens,
                          f_ens,
                          n_neurons=n_neurons,
                          t=t_sim,
                          f=f,
                          dt=dt,
                          neuron_type=neuron_type,
                          stim_func=stim_func,
                          T=T,
                          w_x=w_x,
                          e_u=e_u,
                          w_u=w_u,
                          stim_func_base=stim_func_base,
                          L_u=True)
                w_u = data['w_u']
                e_u = data['e_u']
                np.savez('data/memory_DA%s_w.npz' % DA,
                         w_x=w_x,
                         e_x=e_x,
                         w_u=w_u,
                         e_u=e_u)
                a_ens = f_smooth.filt(data['ens'], dt=dt)
                a_supv = f_smooth.filt(data['supv'], dt=dt)
                for n in range(n_neurons):
                    fig, ax = plt.subplots(1, 1)
                    ax.plot(data['times'],
                            a_supv[:, n],
                            alpha=0.5,
                            label='supv')
                    ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                    ax.set(ylabel='firing rate', ylim=((0, 40)))
                    plt.legend()
                    plt.savefig(
                        'plots/tuning/memory_u_DA%s_nenc_%s_activity_%s.pdf' %
                        (DA, nenc, n))
                    plt.close('all')

    if load_fd:
        load = np.load(fd_file)
        d_ens = load['d_ens']
        taus_ens = load['taus_ens']
        f_ens = DoubleExp(taus_ens[0], taus_ens[1])
    else:
        print(
            'gathering filter/decoder training data for ens (white-flat-white)'
        )
        targets = np.zeros((1, 1))
        spikes = np.zeros((1, n_neurons))
        for ntrn in range(n_train):
            print('filter/decoder iteration %s' % ntrn)
            u = make_signal(t=t,
                            t_flat=t_flat,
                            f=f,
                            normed='x',
                            seed=ntrn,
                            dt=dt)
            t_sim = len(u) * dt - dt
            stim_func = lambda t: u[int(t / dt)]
            data = go(d_ens,
                      f_ens,
                      n_neurons=n_neurons,
                      t=t_sim,
                      f=f,
                      dt=dt,
                      neuron_type=neuron_type,
                      stim_func=stim_func,
                      T=T,
                      w_x=w_x,
                      w_u=w_u,
                      L_fd=True)
            targets = np.append(targets, data['x'], axis=0)
            spikes = np.append(spikes, data['ens'], axis=0)

        print('optimizing filters and decoders')
        d_ens, f_ens, taus_ens = df_opt(targets,
                                        spikes,
                                        f,
                                        dt=dt,
                                        penalty=penalty,
                                        reg=reg,
                                        df_evals=df_evals,
                                        name='flat_%s' % neuron_type)
        if DA:
            np.savez('data/memory_%s_DA%s_fd.npz' % (neuron_type, DA),
                     d_ens=d_ens,
                     taus_ens=taus_ens)
        else:
            np.savez('data/memory_%s_fd.npz' % neuron_type,
                     d_ens=d_ens,
                     taus_ens=taus_ens)

        times = np.arange(0, 1, 0.0001)
        fig, ax = plt.subplots()
        ax.plot(times,
                f.impulse(len(times), dt=0.0001),
                label=r"$f^x, \tau_1=%.3f, \tau_2=%.3f$" %
                (-1. / f.poles[0], -1. / f.poles[1]))
        ax.plot(times,
                f_ens.impulse(len(times), dt=0.0001),
                label=r"$f^{ens}, \tau_1=%.3f, \tau_2=%.3f, d: %s/%s$" %
                (-1. / f_ens.poles[0], -1. / f_ens.poles[1],
                 np.count_nonzero(d_ens), n_neurons))
        ax.set(xlabel='time (seconds)',
               ylabel='impulse response',
               ylim=((0, 10)))
        ax.legend(loc='upper right')
        plt.tight_layout()
        if DA:
            plt.savefig("plots/memory_%s_DA%s_filters.pdf" % (neuron_type, DA))
        else:
            plt.savefig("plots/memory_%s_filters.pdf" % neuron_type)

        a_ens = f_ens.filt(spikes, dt=dt)
        xhat_ens = np.dot(a_ens, d_ens)
        x = f.filt(targets, dt=dt)
        rmse_ens = rmse(xhat_ens, x)
        fig, ax = plt.subplots()
        ax.plot(x, linestyle="--", label='x')
        ax.plot(xhat_ens, label='ens, rmse=%.3f' % rmse_ens)
        ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="train_fb")
        plt.legend(loc='upper right')
        if DA:
            plt.savefig("plots/memory_%s_DA%s_train_fb.pdf" %
                        (neuron_type, DA))
        else:
            plt.savefig("plots/memory_%s_train_fb.pdf" % neuron_type)

    if isinstance(neuron_type, DurstewitzNeuron):
        if load_w_fb:
            w_fb = np.load(w_file)['w_fb']
            e_fb = np.load(w_file)['e_fb']
        else:
            print('optimizing encoders from ens2 into ens (white noise)')
            e_fb = None
            w_fb = None
            for nenc in range(n_train):
                print("encoding trial %s" % nenc)
                u = make_signal(t=t, t_flat=t_flat, f=f, normed='x', seed=nenc)
                t_sim = len(u) * dt - dt
                stim_func = lambda t: u[int(t / dt)]
                data = go(d_ens,
                          f_ens,
                          n_neurons=n_neurons,
                          t=t_sim,
                          f=f,
                          dt=dt,
                          neuron_type=neuron_type,
                          stim_func=stim_func,
                          T=T,
                          w_x=w_x,
                          w_u=w_u,
                          e_fb=e_fb,
                          w_fb=w_fb,
                          L_fb=True)
                w_fb = data['w_fb']
                e_fb = data['e_fb']
                np.savez('data/memory_DA%s_w.npz' % DA,
                         w_x=w_x,
                         e_x=e_x,
                         w_u=w_u,
                         e_u=e_u,
                         w_fb=w_fb,
                         e_fb=e_fb)

                a_ens = f_smooth.filt(data['ens'], dt=dt)
                a_ens2 = f_smooth.filt(data['ens2'], dt=dt)
                a_supv = f_smooth.filt(data['supv'], dt=dt)
                #                 a_supv2 = f_smooth.filt(data['supv2'], dt=dt)
                for n in range(n_neurons):
                    fig, ax = plt.subplots(1, 1)
                    ax.plot(data['times'],
                            a_supv[:, n],
                            alpha=0.5,
                            label='supv')
                    #                     ax.plot(data['times'], a_supv2[:,n], alpha=0.5, label='supv2')
                    ax.plot(data['times'], a_ens[:, n], alpha=0.5, label='ens')
                    ax.plot(data['times'],
                            a_ens2[:, n],
                            alpha=0.5,
                            label='ens2')
                    ax.set(ylabel='firing rate', ylim=((0, 40)))
                    plt.legend()
                    plt.savefig(
                        'plots/tuning/memory_fb_DA%s_nenc_%s_activity_%s.pdf' %
                        (DA, nenc, n))
                    plt.close('all')

    errors_flat = np.zeros((n_test))
    errors_final = np.zeros((n_test))
    errors_abs = np.zeros((n_test, int(t_test / dt)))
    for test in range(n_test):
        print('test %s' % test)
        u = make_signal(t=6,
                        t_flat=t_test,
                        f=f,
                        normed='x',
                        seed=test,
                        dt=dt,
                        test=True)
        t_sim = len(u) * dt - dt
        stim_func = lambda t: u[int(t / dt)]
        if supervised:
            data = go(d_ens,
                      f_ens,
                      n_neurons=n_neurons,
                      t=t_sim,
                      f=f,
                      dt=dt,
                      neuron_type=neuron_type,
                      stim_func=stim_func,
                      T=T,
                      w_x=w_x,
                      w_u=w_u,
                      w_fb=w_fb,
                      supervised=True)
            a_ens = f_ens.filt(data['ens'], dt=dt)
            a_ens2 = f_ens.filt(data['ens2'], dt=dt)
            x = f.filt(f.filt(data['x'], dt=dt), dt=dt)
            xhat_ens = np.dot(a_ens, d_ens)
            xhat_ens2 = np.dot(a_ens2, d_ens)
            xhat_supv = data['supv_state']
            xhat_supv2 = data['supv2_state']
            error_ens = rmse(xhat_ens, x)
            error_ens2 = rmse(xhat_ens2, x)
            error_supv = rmse(xhat_supv, x)
            error_supv2 = rmse(xhat_supv2, x)

            fig, ax = plt.subplots()
            ax.plot(data['times'], x, linestyle="--", label='x')
            ax.plot(data['times'],
                    xhat_ens,
                    label='ens, error=%.3f' % error_ens)
            ax.plot(data['times'],
                    xhat_ens2,
                    label='ens2, error=%.3f' % error_ens2)
            ax.plot(data['times'],
                    xhat_supv,
                    label='supv, error=%.3f' % error_supv)
            ax.plot(data['times'],
                    xhat_supv2,
                    label='supv2, error=%.3f' % error_supv2)
            ax.set(xlabel='time (s)',
                   ylabel=r'$\mathbf{x}$',
                   title="supervised test")
            plt.legend(loc='upper right')
            if DA:
                plt.savefig("plots/memory_%s_DA%s_supervised_test_%s.pdf" %
                            (neuron_type, DA, test))
            else:
                plt.savefig("plots/memory_%s_supervised_test_%s.pdf" %
                            (neuron_type, test))
            plt.close('all')

        else:
            data = go(d_ens,
                      f_ens,
                      n_neurons=n_neurons,
                      t=t_sim,
                      f=f,
                      dt=dt,
                      neuron_type=neuron_type,
                      stim_func=stim_func,
                      T=T,
                      w_u=w_u,
                      w_x=None,
                      w_fb=w_fb)
            a_ens = f_ens.filt(data['ens'], dt=dt)
            u = f.filt(f.filt(T * data['u'], dt=dt), dt=dt)
            x = f.filt(data['x'], dt=dt)
            xhat_ens = np.dot(a_ens, d_ens)
            error_flat = rmse(xhat_ens[-int(t_test / dt):],
                              x[-int(t_test / dt):])
            error_final = rmse(xhat_ens[-1], x[-1])
            error_abs = np.abs(xhat_ens[-int(t_test / dt):, 0] -
                               x[-int(t_test / dt):, 0])
            errors_flat[test] = error_flat
            errors_final[test] = error_final
            errors_abs[test] = error_abs

            if test > 10:
                continue
            fig, ax = plt.subplots()
            ax.plot(data['times'], u, linestyle="--", label='u')
            ax.plot(data['times'], x, linestyle="--", label='x')
            ax.plot(data['times'],
                    xhat_ens,
                    label='error_flat=%.3f, error_final=%.3f' %
                    (error_flat, error_final))
            ax.set(xlabel='time (s)', ylabel=r'$\mathbf{x}$', title="test")
            plt.legend(loc='upper right')
            if DA:
                plt.savefig("plots/memory_%s_DA%s_test_%s.pdf" %
                            (DA, neuron_type, test))
            else:
                plt.savefig("plots/memory_%s_test_%s.pdf" %
                            (neuron_type, test))
            plt.close('all')

            fig, ax = plt.subplots()
            ax.plot(data['times'][-int(t_test / dt):],
                    error_abs,
                    linestyle="--",
                    label='error')
            ax.set(xlabel='time (s)',
                   ylabel=r'$|\mathbf{x} - \mathbf{\hat{x}}|$',
                   title="test")
            #             plt.legend(loc='upper right')
            if DA:
                plt.savefig("plots/memory_abs_%s_DA%a_test_%s.pdf" %
                            (DA, neuron_type, test))
            else:
                plt.savefig("plots/memory_abs_%s_test_%s.pdf" %
                            (neuron_type, test))
            plt.close('all')

    mean_flat = np.mean(errors_flat)
    mean_final = np.mean(errors_final)
    CI_flat = sns.utils.ci(errors_flat)
    CI_final = sns.utils.ci(errors_final)
    if DA:
        np.savez("data/%s_DA%s_errors_abs.npz" % (neuron_type, DA),
                 errors_abs=errors_abs)
    else:
        np.savez("data/%s_errors_abs.npz" % neuron_type, errors_abs=errors_abs)

#     errors = np.vstack((errors_flat, errors_final))
#     names =  ['flat', 'final']
#     fig, ax = plt.subplots()
#     sns.barplot(data=errors.T)
#     ax.set(ylabel='RMSE')
#     plt.xticks(np.arange(len(names)), tuple(names), rotation=0)
#     plt.savefig("plots/memory_%s_errors.pdf"%neuron_type)

    dfs = []
    columns = ("nAvg", "time", "error")
    for a in range(errors_abs.shape[0]):
        for t in range(errors_abs.shape[1]):
            dfs.append(
                pd.DataFrame([[a, dt * t, errors_abs[a, t]]], columns=columns))
    df = pd.concat([df for df in dfs], ignore_index=True)
    fig, ax = plt.subplots()
    sns.lineplot(data=df, x="time", y="error", ax=ax)
    ax.set(xlabel='time (s)', ylabel=r'$|\mathbf{x} - \mathbf{\hat{x}}|$')
    fig.tight_layout()
    if DA:
        fig.savefig("plots/memory_abs_%s_DA%s_all.pdf" % (neuron_type, DA))
    else:
        fig.savefig("plots/memory_abs_%s_all.pdf" % (neuron_type))
    plt.close('all')

    print("errors: mean flat=%.3f, mean final=%.3f" %
          (np.mean(errors_flat), np.mean(errors_final)))
    return errors_flat, errors_final