Ejemplo n.º 1
0
    def test_welch_psd_multidim_input(self):
        # generate multidimensional data
        num_channel = 4
        data_length = 5000
        sampling_period = 0.001
        noise = np.random.normal(size=(num_channel, data_length))
        data_np = np.array(noise)
        # Since row-column order in AnalogSignalArray is different from the
        # conventional one, `data_np` needs to be transposed when its used to
        # define an AnalogSignalArray
        data_neo = n.AnalogSignalArray(data_np.T,
                                       sampling_period=sampling_period * pq.s,
                                       units='mV')
        data_neo_1dim = n.AnalogSignalArray(data_np[0],
                                            sampling_period=sampling_period *
                                            pq.s,
                                            units='mV')

        # check if the results from different input types are identical
        freqs_np, psd_np = elephant.spectral.welch_psd(data_np,
                                                       fs=1 / sampling_period)
        freqs_neo, psd_neo = elephant.spectral.welch_psd(data_neo)
        freqs_neo_1dim, psd_neo_1dim = elephant.spectral.welch_psd(
            data_neo_1dim)
        self.assertTrue(np.all(freqs_np == freqs_neo))
        self.assertTrue(np.all(psd_np == psd_neo))
        self.assertTrue(np.all(psd_neo_1dim == psd_neo[0]))
Ejemplo n.º 2
0
    def test_welch_cohere_errors(self):
        # generate a dummy data
        x = n.AnalogSignalArray(np.zeros(5000),
                                sampling_period=0.001 * pq.s,
                                units='mV')
        y = n.AnalogSignalArray(np.zeros(5000),
                                sampling_period=0.001 * pq.s,
                                units='mV')

        # check for invalid parameter values
        # - length of segments
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          len_seg=0)
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          len_seg=x.shape[-1] * 2)
        # - number of segments
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          num_seg=0)
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          num_seg=x.shape[-1] * 2)
        # - frequency resolution
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          freq_res=-1)
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          freq_res=x.sampling_rate / (x.shape[-1] + 1))
        # - overlap
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          overlap=-1.0)
        self.assertRaises(ValueError,
                          elephant.spectral.welch_cohere,
                          x,
                          y,
                          overlap=1.1)
Ejemplo n.º 3
0
    def test_welch_psd_behavior(self):
        # generate data by adding white noise and a sinusoid
        data_length = 5000
        sampling_period = 0.001
        signal_freq = 100.0
        noise = np.random.normal(size=data_length)
        signal = [
            np.sin(2 * np.pi * signal_freq * t)
            for t in np.arange(0, data_length *
                               sampling_period, sampling_period)
        ]
        data = n.AnalogSignalArray(np.array(signal + noise),
                                   sampling_period=sampling_period * pq.s,
                                   units='mV')

        # consistency between different ways of specifying segment length
        freqs1, psd1 = elephant.spectral.welch_psd(data,
                                                   len_seg=data_length // 5,
                                                   overlap=0)
        freqs2, psd2 = elephant.spectral.welch_psd(data, num_seg=5, overlap=0)
        self.assertTrue(np.all((psd1 == psd2, freqs1 == freqs2)))

        # frequency resolution and consistency with data
        freq_res = 1.0 * pq.Hz
        freqs, psd = elephant.spectral.welch_psd(data, freq_res=freq_res)
        self.assertAlmostEqual(freq_res, freqs[1] - freqs[0])
        self.assertEqual(freqs[psd.argmax()], signal_freq)
        freqs_np, psd_np = elephant.spectral.welch_psd(data.magnitude,
                                                       fs=1 / sampling_period,
                                                       freq_res=freq_res)
        self.assertTrue(np.all((freqs == freqs_np, psd == psd_np)))

        # check of scipy.signal.welch() parameters
        params = {
            'window': 'hamming',
            'nfft': 1024,
            'detrend': 'linear',
            'return_onesided': False,
            'scaling': 'spectrum'
        }
        for key, val in params.items():
            freqs, psd = elephant.spectral.welch_psd(data,
                                                     len_seg=1000,
                                                     overlap=0,
                                                     **{key: val})
            freqs_spsig, psd_spsig = spsig.welch(data,
                                                 fs=1 / sampling_period,
                                                 nperseg=1000,
                                                 noverlap=0,
                                                 **{key: val})
            self.assertTrue(np.all((freqs == freqs_spsig, psd == psd_spsig)))

        # - generate multidimensional data for check of parameter `axis`
        num_channel = 4
        data_length = 5000
        data_multidim = np.random.normal(size=(num_channel, data_length))
        freqs, psd = elephant.spectral.welch_psd(data_multidim)
        freqs_T, psd_T = elephant.spectral.welch_psd(data_multidim.T, axis=0)
        self.assertTrue(np.all(freqs == freqs_T))
        self.assertTrue(np.all(psd == psd_T.T))
Ejemplo n.º 4
0
    def test_welch_psd_input_types(self):
        # generate a test data
        sampling_period = 0.001
        data = n.AnalogSignalArray(np.array(np.random.normal(size=5000)),
                                   sampling_period=sampling_period * pq.s,
                                   units='mV')

        # outputs from AnalogSignalArray input are of Quantity type (standard usage)
        freqs_neo, psd_neo = elephant.spectral.welch_psd(data)
        self.assertTrue(isinstance(freqs_neo, pq.quantity.Quantity))
        self.assertTrue(isinstance(psd_neo, pq.quantity.Quantity))

        # outputs from Quantity array input are of Quantity type
        freqs_pq, psd_pq = elephant.spectral.welch_psd(data.magnitude *
                                                       data.units,
                                                       fs=1 / sampling_period)
        self.assertTrue(isinstance(freqs_pq, pq.quantity.Quantity))
        self.assertTrue(isinstance(psd_pq, pq.quantity.Quantity))

        # outputs from Numpy ndarray input are NOT of Quantity type
        freqs_np, psd_np = elephant.spectral.welch_psd(data.magnitude,
                                                       fs=1 / sampling_period)
        self.assertFalse(isinstance(freqs_np, pq.quantity.Quantity))
        self.assertFalse(isinstance(psd_np, pq.quantity.Quantity))

        # check if the results from different input types are identical
        self.assertTrue(np.all((freqs_neo == freqs_pq, psd_neo == psd_pq)))
        self.assertTrue(np.all((freqs_neo == freqs_np, psd_neo == psd_np)))
Ejemplo n.º 5
0
    def test_welch_cohere_input_types(self):
        # generate a test data
        sampling_period = 0.001
        x = n.AnalogSignalArray(np.array(np.random.normal(size=5000)),
                                sampling_period=sampling_period * pq.s,
                                units='mV')
        y = n.AnalogSignalArray(np.array(np.random.normal(size=5000)),
                                sampling_period=sampling_period * pq.s,
                                units='mV')

        # outputs from AnalogSignalArray input are of Quantity type
        # (standard usage)
        freqs_neo, coherency_neo, phase_lag_neo =\
            elephant.spectral.welch_cohere(x, y)
        self.assertTrue(isinstance(freqs_neo, pq.quantity.Quantity))
        self.assertTrue(isinstance(phase_lag_neo, pq.quantity.Quantity))

        # outputs from Quantity array input are of Quantity type
        freqs_pq, coherency_pq, phase_lag_pq =\
            elephant.spectral.welch_cohere(x.magnitude*x.units,
                y.magnitude*y.units, fs=1/sampling_period)
        self.assertTrue(isinstance(freqs_pq, pq.quantity.Quantity))
        self.assertTrue(isinstance(phase_lag_pq, pq.quantity.Quantity))

        # outputs from Numpy ndarray input are NOT of Quantity type
        freqs_np, coherency_np, phase_lag_np =\
            elephant.spectral.welch_cohere(x.magnitude, y.magnitude,
                fs=1/sampling_period)
        self.assertFalse(isinstance(freqs_np, pq.quantity.Quantity))
        self.assertFalse(isinstance(phase_lag_np, pq.quantity.Quantity))

        # check if the results from different input types are identical
        self.assertTrue(
            np.all((freqs_neo == freqs_pq, coherency_neo == coherency_pq,
                    phase_lag_neo == phase_lag_pq)))
        self.assertTrue(
            np.all((freqs_neo == freqs_np, coherency_neo == coherency_np,
                    phase_lag_neo == phase_lag_np)))
Ejemplo n.º 6
0
    def test_welch_cohere_multidim_input(self):
        # generate multidimensional data
        num_channel = 4
        data_length = 5000
        sampling_period = 0.001
        x_np = np.array(np.random.normal(size=(num_channel, data_length)))
        y_np = np.array(np.random.normal(size=(num_channel, data_length)))
        # Since row-column order in AnalogSignalArray is different from the
        # convention in NumPy/SciPy, `data_np` needs to be transposed when its
        # used to define an AnalogSignalArray
        x_neo = n.AnalogSignalArray(x_np.T,
                                    units='mV',
                                    sampling_period=sampling_period * pq.s)
        y_neo = n.AnalogSignalArray(y_np.T,
                                    units='mV',
                                    sampling_period=sampling_period * pq.s)
        x_neo_1dim = n.AnalogSignalArray(x_np[0],
                                         units='mV',
                                         sampling_period=sampling_period *
                                         pq.s)
        y_neo_1dim = n.AnalogSignalArray(y_np[0],
                                         units='mV',
                                         sampling_period=sampling_period *
                                         pq.s)

        # check if the results from different input types are identical
        freqs_np, coherency_np, phase_lag_np =\
            elephant.spectral.welch_cohere(x_np, y_np, fs=1/sampling_period)
        freqs_neo, coherency_neo, phase_lag_neo =\
            elephant.spectral.welch_cohere(x_neo, y_neo)
        freqs_neo_1dim, coherency_neo_1dim, phase_lag_neo_1dim =\
            elephant.spectral.welch_cohere(x_neo_1dim, y_neo_1dim)
        self.assertTrue(np.all(freqs_np == freqs_neo))
        self.assertTrue(np.all(coherency_np.T == coherency_neo))
        self.assertTrue(np.all(phase_lag_np.T == phase_lag_neo))
        self.assertTrue(np.all(coherency_neo_1dim == coherency_neo[:, 0]))
        self.assertTrue(np.all(phase_lag_neo_1dim == phase_lag_neo[:, 0]))
Ejemplo n.º 7
0
    def test_welch_cohere_behavior(self):
        # generate data by adding white noise and a sinusoid
        data_length = 5000
        sampling_period = 0.001
        signal_freq = 100.0
        noise1 = np.random.normal(size=data_length) * 0.01
        noise2 = np.random.normal(size=data_length) * 0.01
        signal1 = [
            np.cos(2 * np.pi * signal_freq * t)
            for t in np.arange(0, data_length *
                               sampling_period, sampling_period)
        ]
        signal2 = [
            np.sin(2 * np.pi * signal_freq * t)
            for t in np.arange(0, data_length *
                               sampling_period, sampling_period)
        ]
        x = n.AnalogSignalArray(np.array(signal1 + noise1),
                                units='mV',
                                sampling_period=sampling_period * pq.s)
        y = n.AnalogSignalArray(np.array(signal2 + noise2),
                                units='mV',
                                sampling_period=sampling_period * pq.s)

        # consistency between different ways of specifying segment length
        freqs1, coherency1, phase_lag1 = elephant.spectral.welch_cohere(
            x, y, len_seg=data_length // 5, overlap=0)
        freqs2, coherency2, phase_lag2 = elephant.spectral.welch_cohere(
            x, y, num_seg=5, overlap=0)
        self.assertTrue(
            np.all((coherency1 == coherency2, phase_lag1 == phase_lag2,
                    freqs1 == freqs2)))

        # frequency resolution and consistency with data
        freq_res = 1.0 * pq.Hz
        freqs, coherency, phase_lag = elephant.spectral.welch_cohere(
            x, y, freq_res=freq_res)
        self.assertAlmostEqual(freq_res, freqs[1] - freqs[0])
        self.assertAlmostEqual(freqs[coherency.argmax()],
                               signal_freq,
                               places=2)
        self.assertAlmostEqual(phase_lag[coherency.argmax()],
                               np.pi / 2,
                               places=2)
        freqs_np, coherency_np, phase_lag_np =\
            elephant.spectral.welch_cohere(x.magnitude, y.magnitude,
                fs=1/sampling_period, freq_res=freq_res)
        self.assertTrue(
            np.all((freqs == freqs_np, coherency == coherency_np,
                    phase_lag == phase_lag_np)))

        # - check the behavior of parameter `axis` using multidimensional data
        num_channel = 4
        data_length = 5000
        x_multidim = np.random.normal(size=(num_channel, data_length))
        y_multidim = np.random.normal(size=(num_channel, data_length))
        freqs, coherency, phase_lag =\
            elephant.spectral.welch_cohere(x_multidim, y_multidim)
        freqs_T, coherency_T, phase_lag_T =\
            elephant.spectral.welch_cohere(x_multidim.T, y_multidim.T, axis=0)
        self.assertTrue(np.all(freqs == freqs_T))
        self.assertTrue(np.all(coherency == coherency_T.T))
        self.assertTrue(np.all(phase_lag == phase_lag_T.T))