Ejemplo n.º 1
0
def get_Xc_yc(fname,p_smooth,unit_num,binsize):
    varlist = ['M', 'F', 'TH', 'PHIE']
    blk = neoUtils.get_blk(fname)
    blk_smooth = GLM.get_blk_smooth(fname,p_smooth)

    cbool = neoUtils.get_Cbool(blk)
    X = GLM.create_design_matrix(blk,varlist)
    Xdot = GLM.get_deriv(blk,blk_smooth,varlist,[0,5,9]) #maybe only want one derivative?

    X = np.concatenate([X,Xdot],axis=1)
    X = neoUtils.replace_NaNs(X,'pchip')
    X = neoUtils.replace_NaNs(X,'interp')

    Xbin = GLM.bin_design_matrix(X,binsize=binsize)
    scaler = sklearn.preprocessing.StandardScaler(with_mean=False)
    Xbin = scaler.fit_transform(Xbin)
    cbool_bin= GLM.bin_design_matrix(cbool[:,np.newaxis],binsize=binsize).ravel()

    y = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
    ybin = elephant.conversion.BinnedSpikeTrain(y,binsize=binsize*pq.ms).to_array().T.astype('f8')
    Xbin = Xbin[:ybin.shape[0],:]
    cbool_bin = cbool_bin[:ybin.shape[0]]
    yhat = np.zeros(ybin.shape[0])

    Xc = Xbin[cbool_bin,:]
    yc = ybin[cbool_bin,:]
    return(Xc,yc,cbool_bin,yhat)
Ejemplo n.º 2
0
def calc_MSE(fname, p_smooth, unit_num):
    blk = neoUtils.get_blk(fname)
    blk_smooth = GLM.get_blk_smooth(fname, p_smooth)
    varlist = ['M', 'F', 'TH', 'PHIE']
    root = neoUtils.get_root(blk, unit_num)
    print('Working on {}'.format(root))
    Xdot = GLM.get_deriv(blk, blk_smooth, varlist)[0]
    Xdot = np.reshape(Xdot, [-1, 8, 10])

    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(0)]
    cbool = neoUtils.get_Cbool(blk)
    mse = []
    for ii in range(Xdot.shape[1]):
        var_in = Xdot[:, ii, :].copy()
        mse.append(tuning_curve_MSE(var_in, sp, cbool, bins=50))
    return (mse)
Ejemplo n.º 3
0
def MB_curve(blk,unit_num,save_tgl=False,im_ext='svg',dpi_res=300):
    root = neoUtils.get_root(blk, unit_num)
    M = neoUtils.get_var(blk)
    use_flags = neoUtils.get_Cbool(blk)
    MB = mechanics.get_MB_MD(M)[0].magnitude.ravel()
    MB[np.invert(use_flags)]=0
    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
    r, b = neoUtils.get_rate_b(blk, unit_num, sigma=5 * pq.ms)

    MB_bayes,edges = varTuning.stim_response_hist(MB*1e6,r,use_flags,nbins=100,min_obs=5)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(edges[:-1],MB_bayes,'o',color='k')
    ax.set_ylabel('Spike Rate (sp/s)')
    ax.set_xlabel('Bending Moment ($\mu$N-m)')
    plt.tight_layout()
    if save_tgl:
        plt.savefig('./figs/{}_MB_tuning.{}'.format(root,im_ext),dpi=dpi_res)
        plt.close('all')
Ejemplo n.º 4
0
def mymz_space(blk,unit_num,bin_stretch=False,save_tgl=False,p_save=None,im_ext='png',dpi_res=300):

    root = neoUtils.get_root(blk,unit_num)
    use_flags = neoUtils.get_Cbool(blk)
    M = neoUtils.get_var(blk).magnitude
    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
    idx = np.all(np.isfinite(M),axis=1)
    if bin_stretch:
        MY = np.empty(M.shape[0])
        MZ = np.empty(M.shape[0])
        MY[idx], logit_y = nl(M[idx, 1],90)
        MZ[idx], logit_z = nl(M[idx, 2],90)
    else:
        MY = M[:,1]*1e-6
        MZ = M[:,2]*1e-6


    response, var1_edges,var2_edges = varTuning.joint_response_hist(MY,MZ,sp,use_flags,bins = 100,min_obs=15)
    if bin_stretch:
        var1_edges = logit_y(var1_edges)
        var2_edges = logit_z(var2_edges)
    else:
        pass
    ax = varTuning.plot_joint_response(response,var1_edges,var2_edges,contour=False)
    ax.axvline(color='k',linewidth=1)
    ax.axhline(color='k',linewidth=1)
    ax.patch.set_color([0.6,0.6,0.6])

    mask = response.mask.__invert__()
    if not mask.all():
        ax.set_ylim(var2_edges[np.where(mask)[0].min()], var2_edges[np.where(mask)[0].max()])
        ax.set_xlim(var1_edges[np.where(mask)[1].min()], var1_edges[np.where(mask)[1].max()])

    ax.set_xlabel('M$_y$ ($\mu$N-m)')
    ax.set_ylabel('M$_z$ ($\mu$N-m)')
    plt.draw()
    plt.tight_layout()
    if save_tgl:
        if p_save is None:
            raise ValueError("figure save location is required")
        else:
            plt.savefig(os.path.join(p_save,'{}_mymz.{}'.format(root,im_ext)),dpi=dpi_res)
            plt.close('all')
Ejemplo n.º 5
0
def FX_plots(blk,unit_num,save_tgl=False,im_ext='svg',dpi_res=300):
    root = neoUtils.get_root(blk, unit_num)
    F = neoUtils.get_var(blk,'F')
    Fx = F.magnitude[:,0]
    use_flags = neoUtils.get_Cbool(blk)
    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
    r, b = neoUtils.get_rate_b(blk, unit_num, sigma=5 * pq.ms)

    Fx[np.invert(use_flags)] = 0

    Fx_bayes, edges = varTuning.stim_response_hist(Fx * 1e6, r, use_flags, nbins=50, min_obs=5)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(edges[:-1], Fx_bayes*1000, 'o', color='k')
    ax.set_ylabel('Spike Rate (sp/s)')
    ax.set_xlabel('Axial Force ($\mu$N-m)')
    plt.tight_layout()
    if save_tgl:
        plt.savefig('./figs/{}_Fx_tuning.{}'.format(root,im_ext), dpi=dpi_res)
        plt.close('all')
Ejemplo n.º 6
0
def smoothed(smooth_idx=9):
    smooth_vals = np.arange(5, 100, 10)
    sub_p_save = os.path.join(
        p_save, '{}ms_smoothing_deriv'.format(smooth_vals[smooth_idx]))
    if not os.path.isdir(sub_p_save):
        os.mkdir(sub_p_save)
    for f in glob.glob(os.path.join(p_load, '*NEO.h5')):
        try:
            blk = neoUtils.get_blk(f)
            blk_smooth = GLM.get_blk_smooth(f, p_smooth)
            num_units = len(blk.channel_indexes[-1].units)
            for unit_num in range(num_units):
                varlist = ['M', 'F', 'TH', 'PHIE']
                root = neoUtils.get_root(blk, unit_num)
                print('Working on {}'.format(root))
                outname = os.path.join(
                    sub_p_save,
                    '{}ms_{}_pillowX.mat'.format(smooth_vals[smooth_idx],
                                                 root))

                X = GLM.create_design_matrix(blk, varlist)
                Xdot = GLM.get_deriv(blk, blk_smooth, varlist, [smooth_idx])[0]
                X = np.concatenate([X, Xdot], axis=1)
                sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
                y = neoUtils.get_rate_b(blk, unit_num)[1]
                cbool = neoUtils.get_Cbool(blk)
                arclengths = get_arclength_bool(blk, unit_num)

                sio.savemat(outname, {
                    'X': X,
                    'y': y,
                    'cbool': cbool,
                    'arclengths': arclengths
                })
        except Exception as ex:
            print('Problem with {}:{}'.format(os.path.basename(f), ex))
Ejemplo n.º 7
0
def calc_corr(fname, p_smooth, unit_num):
    blk = neoUtils.get_blk(fname)
    blk_smooth = GLM.get_blk_smooth(fname, p_smooth)
    varlist = ['M', 'F', 'TH', 'PHIE']
    component_list = [
        '{}_dot'.format(x)
        for x in ['Mx', 'My', 'Mz', 'Fx', 'Fy', 'Fz', 'TH', 'PHI']
    ]
    root = neoUtils.get_root(blk, unit_num)
    Xdot = GLM.get_deriv(blk, blk_smooth, varlist)[0]
    Xdot = np.reshape(Xdot, [-1, 8, 10])
    windows = np.arange(5, 100, 10)

    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(0)]
    cbool = neoUtils.get_Cbool(blk)
    corr = []
    R = []
    # loop over variables
    for ii in range(Xdot.shape[1]):
        var_in = Xdot[:, ii, :].copy()
        # loop over smoothing
        r = []
        for jj in range(var_in.shape[1]):
            kernel = elephant.kernels.GaussianKernel(pq.ms * windows[jj])
            FR = elephant.statistics.instantaneous_rate(sp,
                                                        pq.ms,
                                                        kernel=kernel)
            idx = np.isfinite(var_in[:, jj])
            r.append(
                scipy.corrcoef(var_in[:, jj].ravel()[idx],
                               FR.magnitude.ravel()[idx])[0, 1])
        R.append(r)
    R = np.array(R)
    df = pd.DataFrame(data=R, columns=['{}ms'.format(x) for x in windows])
    df.index = component_list
    return (df)
Ejemplo n.º 8
0
def phase_plots(blk,unit_num,save_tgl=False,bin_stretch=False,p_save=None,im_ext='png',dpi_res=300):
    ''' Plot Phase planes for My and Mz'''
    root = neoUtils.get_root(blk, unit_num)
    M = neoUtils.get_var(blk).magnitude
    sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
    r, b = neoUtils.get_rate_b(blk, unit_num, sigma=5 * pq.ms)


    use_flags = neoUtils.get_Cbool(blk)
    Mdot = mechanics.get_deriv(M)


    if bin_stretch:
        raise Exception('Not finished with use_flags')
        # MY, logit_y = nl(M[idx, 1], 90)
        # MZ, logit_z = nl(M[idx, 2], 90)
        # MY_dot, logit_ydot = nl(Mdot[idx, 1], 95)
        # MZ_dot, logit_zdot = nl(Mdot[idx, 2], 95)

    else:
        MY = M[:, 1] * 1e-6
        MZ = M[:, 2] * 1e-6
        MY_dot = Mdot[:, 1] * 1e-6
        MZ_dot = Mdot[:, 2] * 1e-6

    My_response,My_edges,Mydot_edges = varTuning.joint_response_hist(MY, MY_dot, r, use_flags, [100,30],min_obs=15)
    Mz_response,Mz_edges,Mzdot_edges = varTuning.joint_response_hist(MZ, MZ_dot, r, use_flags, [100,30],min_obs=15)


    if bin_stretch:
        My_edges = logit_y(My_edges)
        Mz_edges = logit_z(Mz_edges)
        Mydot_edges = logit_ydot(Mydot_edges)
        Mzdot_edges = logit_zdot(Mzdot_edges)
    else:
        pass

    axy = varTuning.plot_joint_response(My_response,My_edges,Mydot_edges,contour=False)
    axz = varTuning.plot_joint_response(Mz_response,Mz_edges,Mzdot_edges,contour=False)

    # Set bounds
    y_mask = My_response.mask.__invert__()
    if not y_mask.all():
        axy.set_ylim(Mydot_edges[np.where(y_mask)[0].min()], Mydot_edges[np.where(y_mask)[0].max()])
        axy.set_xlim(My_edges[np.where(y_mask)[1].min()], My_edges[np.where(y_mask)[1].max()])

    z_mask = Mz_response.mask.__invert__()
    if not z_mask.all():
        axz.set_ylim(Mzdot_edges[np.where(z_mask)[0].min()], Mzdot_edges[np.where(z_mask)[0].max()])
        axz.set_xlim(Mz_edges[np.where(z_mask)[1].min()], Mz_edges[np.where(z_mask)[1].max()])

    # other annotations
    axy.set_title('M$_y$ Phase Plane')
    axz.set_title('M$_z$ Phase Plane')

    axy.set_xlabel('M$_y$ ($\mu$N-m)')
    axy.set_ylabel('M$_\dot{y}$ ($\mu$N-m/ms)')

    axz.set_xlabel('M$_z$ ($\mu$N-m)')
    axz.set_ylabel('M$_\dot{z}$ ($\mu$N-m/ms)')

    axy.grid('off')
    axy.set_facecolor([0.6, 0.6, 0.6])
    axy.axvline(color='k',linewidth=1)
    axy.axhline(color='k',linewidth=1)

    axz.grid('off')
    axz.set_facecolor([0.6, 0.6, 0.6])
    axz.axvline(color='k', linewidth=1)
    axz.axhline(color='k', linewidth=1)


    plt.sca(axy)
    plt.tight_layout()
    if save_tgl:
        if p_save is None:
            raise ValueError("figure save location is required")
        else:
            plt.savefig(os.path.join(p_save,'{}_My_phaseplane.{}'.format(root,im_ext)),dpi=dpi_res)

    plt.sca(axz)
    plt.tight_layout()
    if save_tgl:
        if p_save is None:
            raise ValueError("figure save location is required")
        else:
            plt.savefig(os.path.join(p_save,'{}_Mz_phaseplane.{}'.format(root,im_ext)),dpi=dpi_res)
        plt.close('all')
Ejemplo n.º 9
0
def calc_world_geom_hist(p_load,p_save,n_bins=100):
    """
     Since calculation takes so long on getting the histograms (mostly loading of data)
    we want to calculate them once and save the data.

    This calculates the Geometry.

    :param p_load: Location where all the neo h5 files live
    :param p_save: Location to save the output data files
    :param n_bins: Number of bins in with which to split the data
    :return None: Saves a 'world_geom_hists.npz' file.
    """
    # init
    ID = []
    all_S_bayes = []
    all_TH_bayes = []
    all_PHIE_bayes = []
    all_ZETA_bayes = []

    all_S_edges = []
    all_TH_edges = []
    all_PHIE_edges = []
    all_ZETA_edges = []

    # loop files
    for f in glob.glob(os.path.join(p_load,'rat*.h5')):
        # load in
        print(os.path.basename(f))
        blk = neoUtils.get_blk(f)

        # get contact
        Cbool = neoUtils.get_Cbool(blk)
        use_flags = neoUtils.concatenate_epochs(blk)

        # get vars
        S = neoUtils.get_var(blk, 'S').magnitude

        TH = neoUtils.get_var(blk, 'TH').magnitude
        neoUtils.center_var(TH, use_flags)

        PHIE = neoUtils.get_var(blk, 'PHIE').magnitude
        neoUtils.center_var(PHIE, use_flags)

        ZETA = neoUtils.get_var(blk, 'ZETA').magnitude
        neoUtils.center_var(ZETA, use_flags)

        # loop units
        for unit in blk.channel_indexes[-1].units:
            # get unit info
            unit_num = int(unit.name[-1])
            r, b = neoUtils.get_rate_b(blk, unit_num, sigma=5 * pq.ms)
            sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
            root = neoUtils.get_root(blk,unit_num)
            ID.append(root)

            # Create hists
            S_bayes, S_edges = varTuning.stim_response_hist(S.ravel(), r, Cbool, nbins=n_bins, min_obs=5)
            TH_bayes, TH_edges = varTuning.stim_response_hist(TH.ravel(), r, Cbool, nbins=n_bins, min_obs=5)
            PHIE_bayes, PHIE_edges = varTuning.stim_response_hist(PHIE.ravel(), r, Cbool, nbins=n_bins,min_obs=5)
            ZETA_bayes, ZETA_edges = varTuning.stim_response_hist(ZETA.ravel(), r, Cbool, nbins=n_bins,min_obs=5)

            # append outputs
            plt.close('all')
            all_S_bayes.append(S_bayes)
            all_TH_bayes.append(TH_bayes)
            all_PHIE_bayes.append(PHIE_bayes)
            all_ZETA_bayes.append(ZETA_bayes)

            all_S_edges.append(S_edges)
            all_TH_edges.append(TH_edges)
            all_PHIE_edges.append(PHIE_edges)
            all_ZETA_edges.append(ZETA_edges)


    np.savez(os.path.join(p_save, 'world_geom_hists.npz'),
             all_S_bayes=all_S_bayes,
             all_TH_bayes=all_TH_bayes,
             all_PHIE_bayes=all_PHIE_bayes,
             all_ZETA_bayes=all_ZETA_bayes,
             all_S_edges=all_S_edges,
             all_TH_edges=all_TH_edges,
             all_PHIE_edges=all_PHIE_edges,
             all_ZETA_edges=all_ZETA_edges,
             ID=ID
             )
Ejemplo n.º 10
0
def calc_all_mech_hists(p_load,p_save,n_bins=100):
    """
    Since calculation takes so long on getting the histograms (mostly loading of data)
    we want to calculate them once and save the data.

    This calculates the mechanics.

    :param p_load: Location where all the neo h5 files live
    :param p_save: Location to save the output data files
    :param n_bins: Number of bins in with which to split the data
    :return None: Saves a 'mech_histograms.npz' file.
    """

    # TODO: This is currently pretty gross, it is really too hardcoded (I wrote it in a car). Do better.
    # TODO: Combine with geometry

    # Case in point:
    all_F_edges = []
    all_M_edges = []
    all_F_bayes = []
    all_M_bayes = []
    all_MB_edges = []
    all_MD_edges = []
    all_MD_bayes = []
    all_MB_bayes = []
    ID = []

    # Loop all neo files
    for f in glob.glob(os.path.join(p_load,'rat*.h5')):
        print(os.path.basename(f))
        blk = neoUtils.get_blk(f)
        Cbool = neoUtils.get_Cbool(blk)
        # Loop all units
        for unit in blk.channel_indexes[-1].units:
            unit_num = int(unit.name[-1])

            # grab needed variables
            r, b = neoUtils.get_rate_b(blk, unit_num, sigma=5 * pq.ms)
            sp = neoUtils.concatenate_sp(blk)['cell_{}'.format(unit_num)]
            root = neoUtils.get_root(blk,unit_num)
            M = neoUtils.get_var(blk).magnitude
            F = neoUtils.get_var(blk,'F').magnitude
            MB, MD = neoUtils.get_MB_MD(M)

            # init histograms
            M_bayes = np.empty([n_bins,3])
            F_bayes = np.empty([n_bins, 3])

            M_edges = np.empty([n_bins+1, 3])
            F_edges = np.empty([n_bins+1, 3])

            #calculate tuning curves (seperately on each dimension)
            for ii in range(3):
                F_bayes[:, ii], F_edges[:, ii] = varTuning.stim_response_hist(F[:, ii] * 1e6, r, Cbool, nbins=n_bins, min_obs=5)
                M_bayes[:, ii], M_edges[:, ii] = varTuning.stim_response_hist(M[:, ii] * 1e6, r, Cbool, nbins=n_bins, min_obs=5)
            MB_bayes, MB_edges = varTuning.stim_response_hist(MB.squeeze() * 1e6, r, Cbool, nbins=n_bins, min_obs=5)
            MD_bayes, MD_edges,_,_ = varTuning.angular_response_hist(MD.squeeze(), r, Cbool, nbins=n_bins)
            plt.close('all')

            # append to output lists
            all_F_edges.append(F_edges)
            all_M_edges.append(M_edges)
            all_MB_edges.append(MB_edges)
            all_MD_edges.append(MD_edges)

            all_F_bayes.append(F_bayes)
            all_M_bayes.append(M_bayes)
            all_MB_bayes.append(MB_bayes)
            all_MD_bayes.append(MD_bayes)
            ID.append(root)
    # save
    np.savez(os.path.join(p_save,'mech_histograms.npz'),
             all_F_bayes=all_F_bayes,
             all_F_edges=all_F_edges,
             all_M_bayes=all_M_bayes,
             all_M_edges=all_M_edges,
             all_MB_bayes=all_MB_bayes,
             all_MB_edges=all_MB_edges,
             all_MD_bayes=all_MD_bayes,
             all_MD_edges=all_MD_edges,
             ID=ID
             )
Ejemplo n.º 11
0
import sys
import neoUtils
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
sns.set()
sns.set_style('ticks')

blk = neoUtils.get_blk(sys.argv[1])
M = neoUtils.get_var(blk).magnitude
sp = neoUtils.concatenate_sp(blk)
cc = neoUtils.concatenate_epochs(blk, -1)
Cbool = neoUtils.get_Cbool(blk)
c_idx = np.where(Cbool)[0]
# M[np.invert(Cbool),:] = 0

ymax = np.nanmax(M) / 4
ymin = np.nanmin(M) / 4


def shadeVector(cc, color='k'):
    ax = plt.gca()
    ylim = ax.get_ylim()
    for start, dur in zip(cc.times.magnitude, cc.durations.magnitude):
        ax.fill([start, start, start + dur, start + dur],
                [ylim[0], ylim[1], ylim[1], ylim[0]],
                color,
                alpha=0.1)


for ii in xrange(len(sp)):
Ejemplo n.º 12
0
import os

sns.set()
sns.set_style('ticks')
dpi_res, figsize, ext = plotVG3D.set_fig_style()
p_load = os.path.join(os.environ['BOX_PATH'],
                      r'__VG3D\_deflection_trials\_NEO')
fname = os.path.join(p_load, r'rat2017_03_JAN10_VG_B1_NEO.h5')
p_save = os.path.join(os.environ['BOX_PATH'],
                      r'__VG3D\_deflection_trials\_NEO\results')
starts = [224600, 298800]
stops = [227000, 300750]
starts = np.array(starts) * pq.ms
stops = np.array(stops) * pq.ms
blk = neoUtils.get_blk(fname)
sp = neoUtils.concatenate_sp(blk)['cell_0']
cc = neoUtils.concatenate_epochs(blk)
cbool = neoUtils.get_Cbool(blk)


def shadeVector(cc, color='k', ax=None):
    if ax is None:
        ax = plt.gca()

    ylim = ax.get_ylim()
    for start, dur in zip(cc.times.magnitude, cc.durations.magnitude):
        ax.fill([start, start, start + dur, start + dur],
                [ylim[0], ylim[1], ylim[1], ylim[0]],
                color,
                alpha=0.1)