def load_mnist(path=".", normalize=True): mnist_dataset = MNIST(path=path, normalize=normalize) return mnist_dataset.load_data()
from neon.util.argparser import NeonArgparser # parse the command line arguments parser = NeonArgparser(__doc__) parser.add_argument('--kbatch', type=int, default=1, help='number of data batches per noise batch in training') parser.add_argument( "--original_cost", action='store_true', help="generator cost log(1-D(G(z))) rather than -log(D(G(z)))") args = parser.parse_args() # load up the mnist data set dataset = MNIST(path=args.data_dir, size=27) train_set = dataset.train_iter valid_set = dataset.valid_iter # setup weight initialization function init = Gaussian(scale=0.05) # generator using "decovolution" layers relu = Rectlin(slope=0) # relu for generator conv = dict(init=init, batch_norm=True, activation=relu) convp1 = dict(init=init, batch_norm=True, activation=relu, padding=1) convp2 = dict(init=init, batch_norm=True, activation=relu, padding=2) convp1s2 = dict(init=init, batch_norm=True, activation=relu, padding=1,
from neon.util.persist import ensure_dirs_exist # parse the command line arguments parser = NeonArgparser(__doc__) parser.add_argument('--kbatch', type=int, default=1, help='number of data batches per noise batch in training') parser.add_argument('--subset_pct', type=float, default=100, help='subset percentage of training dataset to use') args = parser.parse_args() # load up the mnist data set dataset = MNIST(path=args.data_dir, subset_pct=args.subset_pct, size=27) train_set = dataset.train_iter valid_set = dataset.valid_iter # setup weight initialization function init = Gaussian(scale=0.05) # generator using "decovolution" layers relu = Rectlin(slope=0) # relu for generator conv = dict(init=init, batch_norm=True, activation=relu) convp1 = dict(init=init, batch_norm=True, activation=relu, padding=1) convp2 = dict(init=init, batch_norm=True, activation=relu, padding=2) convp1s2 = dict(init=init, batch_norm=True, activation=relu, padding=1,
type=str, default='dc', help='generator model type: dc or mlp, default dc') parser.add_argument('--n_dis_ftr', type=int, default=64, help='base discriminator feature number, default 64') parser.add_argument('--n_gen_ftr', type=int, default=64, help='base generator feature number, default 64') args = parser.parse_args() random_seed = args.rng_seed if args.rng_seed else 0 # load up the mnist data set, padding images to size 32 dataset = MNIST(path=args.data_dir, sym_range=True, size=32, shuffle=True) train = dataset.train_iter # create a GAN model, cost = create_model(dis_model=args.dmodel, gen_model=args.gmodel, cost_type='wasserstein', noise_type='normal', im_size=32, n_chan=1, n_noise=128, n_gen_ftr=args.n_gen_ftr, n_dis_ftr=args.n_dis_ftr, depth=4, n_extra_layers=4, batch_norm=True,