Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser(description='pytorch example: MNIST')
    parser.add_argument('--batch',
                        '-b',
                        type=int,
                        default=100,
                        help='Number of images in each mini-batch')
    parser.add_argument('--model',
                        '-m',
                        default='model.pth',
                        help='Network Model')
    args = parser.parse_args()

    batch_size = args.batch

    print('show training log')

    df = pd.read_csv('train.log')
    plt.plot(df['epoch'], df['train/accuracy'], label='train/acc.', marker="o")
    plt.plot(df['epoch'], df['test/accuracy'], label='test/acc.', marker="o")

    plt.legend(loc='lower right')
    plt.ylim([0.8, 1.0])
    plt.savefig('accuracy.png')
    plt.show()

    transform = transforms.Compose([
        transforms.ToTensor(),  # transform to torch.Tensor
        transforms.Normalize(mean=(0.5, ), std=(0.5, ))
    ])

    trainset = torchvision.datasets.CIFAR10(root='../cifar10_root',
                                            train=True,
                                            download=True,
                                            transform=transform)
    testset = torchvision.datasets.CIFAR10(root='../cifar10_root',
                                           train=False,
                                           download=True,
                                           transform=transform)

    dataset = trainset + testset

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             num_workers=2)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print('device:', device)

    # Load & Predict Test
    param = torch.load('model.pth')
    net = CNN()  #読み込む前にクラス宣言が必要
    net.to(device)  # for GPU
    net.load_state_dict(param)

    true_list = []
    pred_list = []
    with torch.no_grad():
        for data in dataloader:
            images, labels = data

            true_list.extend(labels.tolist())
            images, labels = images.to(device), labels.to(device)  # for GPU

            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            pred_list.extend(predicted.tolist())

    acc = accuracy_score(true_list, pred_list)
    print('Predict... all data acc.: {:.3f}'.format(acc))

    confmat = confusion_matrix(y_true=true_list, y_pred=pred_list)

    fig, ax = plt.subplots(figsize=(6, 6))
    ax.matshow(confmat, cmap=plt.cm.Purples, alpha=0.8)
    for i in range(confmat.shape[0]):
        for j in range(confmat.shape[1]):
            if confmat[i, j] > 0:
                ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center')

    plt.xlabel('predicted label')
    plt.ylabel('true label')
    plt.tight_layout()
    plt.savefig('confusion_matrix.png')
    plt.show()
Ejemplo n.º 2
0
def main():
    start_time = time()
    args = get_args()
    if args.checkpoint_dir_name:
        dir_name = args.checkpoint_dir_name
    else:
        dir_name = datetime.datetime.now().strftime('%y%m%d%H%M%S')
    path_to_dir = Path(__file__).resolve().parents[1]
    path_to_dir = os.path.join(path_to_dir, *['log', dir_name])
    os.makedirs(path_to_dir, exist_ok=True)
    # tensorboard
    path_to_tensorboard = os.path.join(path_to_dir, 'tensorboard')
    os.makedirs(path_to_tensorboard, exist_ok=True)
    writer = SummaryWriter(path_to_tensorboard)
    # model saving
    os.makedirs(os.path.join(path_to_dir, 'model'), exist_ok=True)
    path_to_model = os.path.join(path_to_dir, *['model', 'model.tar'])
    # csv
    os.makedirs(os.path.join(path_to_dir, 'csv'), exist_ok=True)
    path_to_results_csv = os.path.join(path_to_dir, *['csv', 'results.csv'])
    path_to_args_csv = os.path.join(path_to_dir, *['csv', 'args.csv'])
    if not args.checkpoint_dir_name:
        with open(path_to_args_csv, 'a') as f:
            args_dict = vars(args)
            param_writer = csv.DictWriter(f, list(args_dict.keys()))
            param_writer.writeheader()
            param_writer.writerow(args_dict)

    # logging using hyperdash
    if not args.no_hyperdash:
        from hyperdash import Experiment
        exp = Experiment('Classification task on CIFAR10 dataset with CNN')
        for key in vars(args).keys():
            exec("args.%s = exp.param('%s', args.%s)" % (key, key, key))
    else:
        exp = None

    path_to_dataset = os.path.join(
        Path(__file__).resolve().parents[2], 'datasets')
    os.makedirs(path_to_dataset, exist_ok=True)
    train_loader, eval_loader, classes = get_loader(
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        path_to_dataset=path_to_dataset)

    # show some of the training images, for fun.
    dataiter = iter(train_loader)
    images, labels = dataiter.next()
    img_grid = torchvision.utils.make_grid(images)
    matplotlib_imshow(img_grid)
    writer.add_image('four_CIFAR10_images', img_grid)

    # define a network, loss function and optimizer
    model = CNN()
    writer.add_graph(model, images)
    model = torch.nn.DataParallel(model)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum)
    start_epoch = 0
    # resume training
    if args.checkpoint_dir_name:
        print('\nLoading the model...')
        checkpoint = torch.load(path_to_model)
        model.state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        start_epoch = checkpoint['epoch'] + 1
    summary(model, input_size=(3, 32, 32))
    model.to(args.device)

    # train the network
    print('\n--------------------')
    print('Start training and evaluating the CNN')
    for epoch in range(start_epoch, args.n_epoch):
        start_time_per_epoch = time()
        train_loss, train_acc = train(train_loader, model, criterion,
                                      optimizer, args.device, writer, epoch,
                                      classes)
        eval_loss, eval_acc = eval(eval_loader, model, criterion, args.device)
        elapsed_time_per_epoch = time() - start_time_per_epoch
        result_dict = {
            'epoch': epoch,
            'train_loss': train_loss,
            'eval_loss': eval_loss,
            'train_acc': train_acc,
            'eval_acc': eval_acc,
            'elapsed time': elapsed_time_per_epoch
        }
        with open(path_to_results_csv, 'a') as f:
            result_writer = csv.DictWriter(f, list(result_dict.keys()))
            if epoch == 0: result_writer.writeheader()
            result_writer.writerow(result_dict)
        # checkpoint
        torch.save(
            {
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict()
            }, path_to_model)
        if exp:
            exp.metric('train loss', train_loss)
            exp.metric('eval loss', eval_loss)
            exp.metric('train acc', train_acc)
            exp.metric('eval acc', eval_acc)
        else:
            print(result_dict)

        writer.add_scalar('loss/train_loss', train_loss,
                          epoch * len(train_loader))
        writer.add_scalar('loss/eval_loss', eval_loss,
                          epoch * len(eval_loader))
        writer.add_scalar('acc/train_acc', train_acc,
                          epoch * len(train_loader))
        writer.add_scalar('acc/eval_acc', eval_acc, epoch * len(eval_loader))

    elapsed_time = time() - start_time
    print('\nFinished Training, elapsed time ===> %f' % elapsed_time)
    if exp:
        exp.end()
    writer.close()
Ejemplo n.º 3
0
import torch
from net import MLP, CNN  #
from torchvision import datasets, transforms
from sklearn.metrics import multilabel_confusion_matrix
#
test_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
    './fashionmnist_data/',
    train=False,
    transform=transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.1307, ), (0.3081, ))])),
                                          batch_size=1,
                                          shuffle=True)
model = CNN()
device = torch.device('cpu')
model = model.to(device)
model.load_state_dict(torch.load('output/CNN.pt'))
model.eval()
pres = []
labels = []
i = 0
for data, target in test_loader:
    data, target = data.to(device), target.to(device)
    output = model(data)
    pred = output.argmax(
        dim=1, keepdim=True)  # get the index of the max log-probability
    pres.append(pred[0][0].item())
    labels.append(target[0].item())
mcm = multilabel_confusion_matrix(labels, pres)  #mcm
print(mcm)
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description='pytorch example: MNIST')
    parser.add_argument('--batch', '-b', type=int, default=100,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch', '-e', type=int, default=20,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--display', '-d', type=int, default=100,
                        help='Number of interval to show progress')
    args = parser.parse_args()

    batch_size = args.batch
    epoch_size = args.epoch
    display_interval = args.display

    transform = transforms.Compose(
        [transforms.ToTensor(),    # transform to torch.Tensor
        transforms.Normalize(mean=(0.5,), std=(0.5,))])

    trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                          download=True, transform=transform)
    # trainset...
    # <class 'object'>
    #     <class 'torch.utils.data.dataset.Dataset'>
    #         <class 'torchvision.datasets.mnist.MNIST'>
    
    # trainset[0][0]...
    # <class 'object'>
    #     <class 'torch._C._TensorBase'>
    #         <class 'torch.Tensor'> torch.Size([1, 28, 28])

    trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                              shuffle=True, num_workers=2)

    testset = torchvision.datasets.MNIST(root='./data', train=False,
                                         download=True, transform=transform)

    testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                             shuffle=False, num_workers=2)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print('device:', device)

    net = CNN()
    print(net)
    print()

    net.to(device)  # for GPU

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    epoch_list = []
    train_acc_list = []
    test_acc_list = []
    for epoch in range(epoch_size):  # loop over the dataset multiple times

        running_loss = 0.0
        train_true = []
        train_pred = []
        for i, data in enumerate(trainloader, 0):
            # get the inputs
            inputs, labels = data
            
            # inputs...
            # <class 'object'>
            #     <class 'torch._C._TensorBase'>
            #         <class 'torch.Tensor'> torch.Size([100, 1, 28, 28])
            
            train_true.extend(labels.tolist())

            inputs, labels = inputs.to(device), labels.to(device)   # for GPU

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            _, predicted = torch.max(outputs.data, 1)
            train_pred.extend(predicted.tolist())

            # print statistics
            running_loss += loss.item()
            if i % display_interval == display_interval - 1:    # print every 100 mini-batches        
                print('[epochs: {}, mini-batches: {}, images: {}] loss: {:.3f}'.format(
                    epoch + 1, i + 1, (i + 1) * batch_size, running_loss / display_interval))
                running_loss = 0.0

        test_true = []
        test_pred = []
        with torch.no_grad():
            for data in testloader:
                images, labels = data
                test_true.extend(labels.tolist())
                images, labels = images.to(device), labels.to(device)  # for GPU

                outputs = net(images)
                _, predicted = torch.max(outputs.data, 1)            
                test_pred.extend(predicted.tolist())

        train_acc = accuracy_score(train_true, train_pred)
        test_acc = accuracy_score(test_true, test_pred)
        print('    epocs: {}, train acc.: {:.3f}, test acc.: {:.3f}'.format(epoch + 1, train_acc, test_acc))
        print()
        
        epoch_list.append(epoch + 1)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)

    print('Finished Training')

    print('Save Network')
    torch.save(net.state_dict(), 'model.pth')

    df = pd.DataFrame({'epoch': epoch_list,
                       'train/accuracy': train_acc_list,
                       'test/accuracy': test_acc_list})

    print('Save Training Log')
    df.to_csv('train.log', index=False)