Ejemplo n.º 1
0
def create_instrumented_model(args, **kwargs):
    '''
    Creates an instrumented model out of a namespace of arguments that
    correspond to ArgumentParser command-line args:
      model: a string to evaluate as a constructor for the model.
      pthfile: (optional) filename of .pth file for the model.
      layers: a list of layers to instrument, defaulted if not provided.
      edit: True to instrument the layers for editing.
      gen: True for a generator model.  One-pixel input assumed.
      imgsize: For non-generator models, (y, x) dimensions for RGB input.
      cuda: True to use CUDA.
  
    The constructed model will be decorated with the following attributes:
      input_shape: (usually 4d) tensor shape for single-image input.
      output_shape: 4d tensor shape for output.
      feature_shape: map of layer names to 4d tensor shape for featuremaps.
      retained: map of layernames to tensors, filled after every evaluation.
      ablation: if editing, map of layernames to [0..1] alpha values to fill.
      replacement: if editing, map of layernames to values to fill.

    When editing, the feature value x will be replaced by:
        `x = (replacement * ablation) + (x * (1 - ablation))`
    '''

    args = EasyDict(vars(args), **kwargs)

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        return None
    if isinstance(args.model, torch.nn.Module):
        model = args.model
    else:
        model = autoimport_eval(args.model)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Load its state dict
    meta = {}
    if getattr(args, 'pthfile', None) is not None:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)
    model.meta = meta

    # Decide which layers to instrument.
    if getattr(args, 'layer', None) is not None:
        args.layers = [args.layer]
    if getattr(args, 'layers', None) is None:
        # Skip wrappers with only one named model
        container = model
        prefix = ''
        while len(list(container.named_children())) == 1:
            name, container = next(container.named_children())
            prefix += name + '.'
        # Default to all nontrivial top-level layers except last.
        args.layers = [
            prefix + name for name, module in container.named_children()
            if type(module).__module__ not in [
                # Skip ReLU and other activations.
                'torch.nn.modules.activation',
                # Skip pooling layers.
                'torch.nn.modules.pooling'
            ]
        ][:-1]
        print_progress('Defaulting to layers: %s' % ' '.join(args.layers))

    # Instrument the layers.
    retain_layers(model, args.layers)
    if getattr(args, 'edit', False):
        edit_layers(model, args.layers)
    model.eval()
    if args.cuda:
        model.cuda()

    # Annotate input, output, and feature shapes
    annotate_model_shapes(model,
                          gen=getattr(args, 'gen', False),
                          imgsize=getattr(args, 'imgsize', None))
    return model
Ejemplo n.º 2
0
def main():
    # Training settings
    def strpair(arg):
        p = tuple(arg.split(':'))
        if len(p) == 1:
            p = p + p
        return p

    def intpair(arg):
        p = arg.split(',')
        if len(p) == 1:
            p = p + p
        return tuple(int(v) for v in p)

    parser = argparse.ArgumentParser(
        description='Net dissect utility',
        prog='python -m netdissect',
        epilog=textwrap.dedent(help_epilog),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--model',
                        type=str,
                        default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile',
                        type=str,
                        default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--outdir',
                        type=str,
                        default='dissect',
                        help='directory for dissection output')
    parser.add_argument('--layers',
                        type=strpair,
                        nargs='+',
                        help='space-separated list of layer names to dissect' +
                        ', in the form layername[:reportedname]')
    parser.add_argument('--segments',
                        type=str,
                        default='dataset/broden',
                        help='directory containing segmentation dataset')
    parser.add_argument('--download',
                        action='store_true',
                        default=False,
                        help='downloads Broden dataset if needed')
    parser.add_argument('--imgsize',
                        type=intpair,
                        default=(227, 227),
                        help='input image size to use')
    parser.add_argument('--netname',
                        type=str,
                        default=None,
                        help='name for network in generated reports')
    parser.add_argument('--meta',
                        type=str,
                        nargs='+',
                        help='json files of metadata to add to report')
    parser.add_argument('--examples',
                        type=int,
                        default=20,
                        help='number of image examples per unit')
    parser.add_argument('--size',
                        type=int,
                        default=10000,
                        help='dataset subset size to use')
    parser.add_argument('--broden_version',
                        type=int,
                        default=1,
                        help='broden version number')
    parser.add_argument('--batch_size',
                        type=int,
                        default=100,
                        help='batch size for forward pass')
    parser.add_argument('--num_workers',
                        type=int,
                        default=24,
                        help='number of DataLoader workers')
    parser.add_argument('--quantile_threshold',
                        type=float,
                        default=None,
                        help='quantile to use for masks')
    parser.add_argument('--no-labels',
                        action='store_true',
                        default=False,
                        help='disables labeling of units')
    parser.add_argument('--ablation',
                        action='store_true',
                        default=False,
                        help='enables single unit ablation of units')
    parser.add_argument('--iqr',
                        action='store_true',
                        default=False,
                        help='enables iqr calculation')
    parser.add_argument('--maxiou',
                        action='store_true',
                        default=False,
                        help='enables maxiou calculation')
    parser.add_argument('--covariance',
                        action='store_true',
                        default=False,
                        help='enables covariance calculation')
    parser.add_argument('--no-images',
                        action='store_true',
                        default=False,
                        help='disables generation of unit images')
    parser.add_argument('--single-images',
                        action='store_true',
                        default=False,
                        help='generates single images also')
    parser.add_argument('--no-report',
                        action='store_true',
                        default=False,
                        help='disables generation report summary')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA usage')
    parser.add_argument('--gan',
                        type=str,
                        default=None,
                        help='netdissect.GanImageSegmenter() to probe a GAN')
    parser.add_argument('--perturbation',
                        default=None,
                        help='filename of perturbation attack to apply')
    parser.add_argument('--add_scale_offset',
                        action='store_true',
                        default=None,
                        help='offsets masks according to stride and padding')
    parser.add_argument('--quiet',
                        action='store_true',
                        default=False,
                        help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()
    args.images = not args.no_images
    args.report = not args.no_report
    args.labels = not args.no_labels

    # Set up console output
    verbose_progress(not args.quiet)

    # Speed up pytorch
    torch.backends.cudnn.benchmark = True

    # Special case: download flag without model to test.
    if args.model is None and args.download:
        from netdissect.broden import ensure_broden_downloaded
        for resolution in [224, 227, 384]:
            ensure_broden_downloaded(args.segments, resolution,
                                     args.broden_version)
        sys.exit(0)

    # Help if broden is not present
    if not os.path.isdir(args.segments):
        print_progress('Segmentation dataset not found at %s.' % args.segments)
        print_progress('Specify dataset directory using --segments [DIR]')
        print_progress('To download Broden, run: netdissect --download')
        sys.exit(1)

    # Default threshold
    if args.quantile_threshold is None:
        if args.gan:
            args.quantile_threshold = 0.01
        else:
            args.quantile_threshold = 0.005

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        sys.exit(1)

    # Set up CUDA
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        torch.backends.cudnn.benchmark = True

    model = autoimport_eval(args.model)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Default add_scale_offset only for AlexNet-looking models.
    if args.add_scale_offset is None and not args.gan:
        args.add_scale_offset = ('Alex' in model.__class__.__name__)

    # Load its state dict
    meta = {}
    if args.pthfile is None:
        print_progress('Dissecting model without pth file.')
    else:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)

    # Update any metadata from files, if any
    if args.meta:
        for mfilename in args.meta:
            with open(mfilename) as f:
                meta.update(json.load(f))

    # Instrument it and prepare it for eval
    if not args.layers:
        # Skip wrappers with only one named modele
        container = model
        prefix = ''
        while len(list(container.named_children())) == 1:
            name, container = next(container.named_children())
            prefix += name + '.'
        # Default to all nontrivial top-level layers except last.
        args.layers = [
            prefix + name for name, module in container.named_children()
            if type(module).__module__ not in [
                # Skip ReLU and other activations.
                'torch.nn.modules.activation',
                # Skip pooling layers.
                'torch.nn.modules.pooling'
            ]
        ][:-1]
        print_progress('Defaulting to layers: %s' % ' '.join(args.layers))
    retain_layers(model, args.layers, args.add_scale_offset)
    if args.gan:
        ablate_layers(model, args.layers)
    model.eval()
    if args.cuda:
        model.cuda()

    # Set up the output directory, verify write access
    if args.outdir is None:
        args.outdir = os.path.join('dissect', type(model).__name__)
        print_progress('Writing output into %s.' % args.outdir)
    os.makedirs(args.outdir, exist_ok=True)
    train_dataset = None

    if not args.gan:
        # Load dataset for ordinary case.
        # Load perturbation
        perturbation = numpy.load(
            args.perturbation) if args.perturbation else None

        # Load broden dataset
        dataset = try_to_load_broden(args.segments, args.imgsize,
                                     args.broden_version, perturbation,
                                     args.download, args.size)
        if dataset is None:
            ds = try_to_load_multiseg(args.segments, args.imgsize,
                                      perturbation, args.size)
        if dataset is None:
            print_progress('No segmentation dataset found in %s' %
                           args.segements)
            print_progress('use --download to download Broden.')
            sys.exit(1)

        recovery = ReverseNormalize(IMAGE_MEAN, IMAGE_STDEV)
    else:
        # Examine first conv in model to determine input feature size.
        first_layer = [
            c for c in model.modules()
            if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
                              torch.nn.Linear))
        ][0]
        # 4d input if convolutional, 2d input if first layer is linear.
        if isinstance(first_layer,
                      (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
            sample = standard_z_sample(args.size,
                                       first_layer.in_channels)[:, :, None,
                                                                None]
            train_sample = standard_z_sample(args.size,
                                             first_layer.in_channels,
                                             seed=2)[:, :, None, None]
        else:
            sample = standard_z_sample(args.size, first_layer.in_features)
            train_sample = standard_z_sample(args.size,
                                             first_layer.in_features,
                                             seed=2)
        dataset = TensorDataset(sample)
        train_dataset = TensorDataset(train_sample)
        recovery = autoimport_eval(args.gan)

    # Run dissect
    dissect(args.outdir,
            model,
            dataset,
            train_dataset=train_dataset,
            recover_image=recovery,
            examples_per_unit=args.examples,
            netname=args.netname,
            quantile_threshold=args.quantile_threshold,
            meta=meta,
            make_images=args.images or args.single_images,
            make_labels=args.labels,
            make_ablation=args.ablation,
            make_iqr=args.iqr,
            make_maxiou=args.maxiou,
            make_covariance=args.covariance,
            make_report=args.report,
            make_row_images=args.images,
            make_single_images=args.single_images,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            settings=vars(args))
Ejemplo n.º 3
0
 def eval_loss_and_reg():
     discrete_experiments = dict(
        # dpixel=dict(discrete_pixels=True),
        # dunits20=dict(discrete_units=20),
        # dumix20=dict(discrete_units=20, mixed_units=True),
        # dunits10=dict(discrete_units=10),
        # abonly=dict(ablation_only=True),
        # fimabl=dict(ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        dboth20=dict(discrete_units=20, discrete_pixels=True),
        # dbothm20=dict(discrete_units=20, mixed_units=True,
        #              discrete_pixels=True),
        # abdisc20=dict(discrete_units=20, discrete_pixels=True,
        #             ablation_only=True),
        # abdiscm20=dict(discrete_units=20, mixed_units=True,
        #             discrete_pixels=True,
        #             ablation_only=True),
        # fimadp=dict(discrete_pixels=True,
        #             ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        # fimadu10=dict(discrete_units=10,
        #             ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        # fimadb10=dict(discrete_units=10, discrete_pixels=True,
        #             ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        fimadbm10=dict(discrete_units=10, mixed_units=True,
                    discrete_pixels=True,
                    ablation_only=True,
                    fullimage_ablation=True,
                    fullimage_measurement=True),
        # fimadu20=dict(discrete_units=20,
        #             ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        # fimadb20=dict(discrete_units=20, discrete_pixels=True,
        #             ablation_only=True,
        #             fullimage_ablation=True,
        #             fullimage_measurement=True),
        fimadbm20=dict(discrete_units=20, mixed_units=True,
                    discrete_pixels=True,
                    ablation_only=True,
                    fullimage_ablation=True,
                    fullimage_measurement=True)
        )
     with torch.no_grad():
         total_loss = 0
         discrete_losses = {k: 0 for k in discrete_experiments}
         for [pbatch, ploc, cbatch, cloc] in progress(
                 torch.utils.data.DataLoader(TensorDataset(
                     corpus.eval_present_sample,
                     corpus.eval_present_location,
                     corpus.eval_candidate_sample,
                     corpus.eval_candidate_location),
                 batch_size=args.inference_batch_size, num_workers=10,
                 shuffle=False, pin_memory=True),
                 desc="Eval"):
             # First, put in zeros for the selected units.
             # Loss is amount of remaining object.
             total_loss = total_loss + ace_loss(segmenter, classnum,
                     model, args.layer, high_replacement, ablation,
                     pbatch, ploc, cbatch, cloc, run_backward=False,
                     ablation_only=ablation_only,
                     fullimage_measurement=fullimage_measurement)
             for k, config in discrete_experiments.items():
                 discrete_losses[k] = discrete_losses[k] + ace_loss(
                     segmenter, classnum,
                     model, args.layer, high_replacement, ablation,
                     pbatch, ploc, cbatch, cloc, run_backward=False,
                     **config)
         avg_loss = (total_loss / args.eval_size).item()
         avg_d_losses = {k: (d / args.eval_size).item()
                 for k, d in discrete_losses.items()}
         regularizer = (args.l2_lambda * ablation.pow(2).sum())
         print_progress('Epoch %d Loss %g Regularizer %g' %
                 (epoch, avg_loss, regularizer))
         print_progress(' '.join('%s: %g' % (k, d)
                 for k, d in avg_d_losses.items()))
         print_progress(scale_summary(ablation.view(-1), 10, 3))
         return avg_loss, regularizer, avg_d_losses
Ejemplo n.º 4
0
def main():
    # Training settings
    def strpair(arg):
        p = tuple(arg.split(':'))
        if len(p) == 1:
            p = p + p
        return p

    def intpair(arg):
        p = arg.split(',')
        if len(p) == 1:
            p = p + p
        return tuple(int(v) for v in p)

    parser = argparse.ArgumentParser(
        description='Net dissect utility',
        prog='python -m netdissect',
        epilog=textwrap.dedent(help_epilog),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--model',
                        type=str,
                        default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile',
                        type=str,
                        default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--unstrict',
                        action='store_true',
                        default=False,
                        help='ignore unexpected pth parameters')
    parser.add_argument('--submodule',
                        type=str,
                        default=None,
                        help='submodule to load from pthfile')
    parser.add_argument('--outdir',
                        type=str,
                        default='dissect',
                        help='directory for dissection output')
    parser.add_argument('--layers',
                        type=strpair,
                        nargs='+',
                        help='space-separated list of layer names to dissect' +
                        ', in the form layername[:reportedname]')
    parser.add_argument('--segments',
                        type=str,
                        default='dataset/broden',
                        help='directory containing segmentation dataset')
    parser.add_argument('--segmenter',
                        type=str,
                        default=None,
                        help='constructor for asegmenter class')
    parser.add_argument('--download',
                        action='store_true',
                        default=False,
                        help='downloads Broden dataset if needed')
    parser.add_argument('--imagedir',
                        type=str,
                        default=None,
                        help='directory containing image-only dataset')
    parser.add_argument('--imgsize',
                        type=intpair,
                        default=(227, 227),
                        help='input image size to use')
    parser.add_argument('--netname',
                        type=str,
                        default=None,
                        help='name for network in generated reports')
    parser.add_argument('--meta',
                        type=str,
                        nargs='+',
                        help='json files of metadata to add to report')
    parser.add_argument('--merge',
                        type=str,
                        help='json file of unit data to merge in report')
    parser.add_argument('--examples',
                        type=int,
                        default=20,
                        help='number of image examples per unit')
    parser.add_argument('--size',
                        type=int,
                        default=10000,
                        help='dataset subset size to use')
    parser.add_argument('--batch_size',
                        type=int,
                        default=100,
                        help='batch size for forward pass')
    parser.add_argument('--num_workers',
                        type=int,
                        default=24,
                        help='number of DataLoader workers')
    parser.add_argument('--quantile_threshold',
                        type=strfloat,
                        default=None,
                        choices=[FloatRange(0.0, 1.0), 'iqr'],
                        help='quantile to use for masks')
    parser.add_argument('--no-labels',
                        action='store_true',
                        default=False,
                        help='disables labeling of units')
    parser.add_argument('--maxiou',
                        action='store_true',
                        default=False,
                        help='enables maxiou calculation')
    parser.add_argument('--covariance',
                        action='store_true',
                        default=False,
                        help='enables covariance calculation')
    parser.add_argument('--rank_all_labels',
                        action='store_true',
                        default=False,
                        help='include low-information labels in rankings')
    parser.add_argument('--no-images',
                        action='store_true',
                        default=False,
                        help='disables generation of unit images')
    parser.add_argument('--no-report',
                        action='store_true',
                        default=False,
                        help='disables generation report summary')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA usage')
    parser.add_argument('--gen',
                        action='store_true',
                        default=False,
                        help='test a generator model (e.g., a GAN)')
    parser.add_argument('--gan',
                        action='store_true',
                        default=False,
                        help='synonym for --gen')
    parser.add_argument('--perturbation',
                        default=None,
                        help='filename of perturbation attack to apply')
    parser.add_argument('--add_scale_offset',
                        action='store_true',
                        default=None,
                        help='offsets masks according to stride and padding')
    parser.add_argument('--quiet',
                        action='store_true',
                        default=False,
                        help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()
    args.images = not args.no_images
    args.report = not args.no_report
    args.labels = not args.no_labels
    if args.gan:
        args.gen = args.gan

    # Set up console output
    verbose_progress(not args.quiet)

    # Exit right away if job is already done or being done.
    if args.outdir is not None:
        exit_if_job_done(args.outdir)

    # Speed up pytorch
    torch.backends.cudnn.benchmark = True

    # Special case: download flag without model to test.
    if args.model is None and args.download:
        from netdissect.broden import ensure_broden_downloaded
        for resolution in [224, 227, 384]:
            ensure_broden_downloaded(args.segments, resolution, 1)
        from netdissect.segmenter import ensure_upp_segmenter_downloaded
        ensure_upp_segmenter_downloaded('dataset/segmodel')
        sys.exit(0)

    # Help if broden is not present
    if not args.gen and not args.imagedir and not os.path.isdir(args.segments):
        print_progress('Segmentation dataset not found at %s.' % args.segments)
        print_progress('Specify dataset directory using --segments [DIR]')
        print_progress('To download Broden, run: netdissect --download')
        sys.exit(1)

    # Default segmenter class
    if args.gen and args.segmenter is None:
        args.segmenter = ("netdissect.segmenter.UnifiedParsingSegmenter(" +
                          "segsizes=[256], segdiv=None)")

    # Default threshold
    if args.quantile_threshold is None:
        if args.gen:
            args.quantile_threshold = 'iqr'
        else:
            args.quantile_threshold = 0.005

    # Set up CUDA
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        torch.backends.cudnn.benchmark = True

    # Construct the network with specified layers instrumented
    if args.model is None:
        print_progress('No model specified')
        sys.exit(1)
    model = create_instrumented_model(args)

    # Update any metadata from files, if any
    meta = getattr(model, 'meta', {})
    if args.meta:
        for mfilename in args.meta:
            with open(mfilename) as f:
                meta.update(json.load(f))

    # Load any merge data from files
    mergedata = None
    if args.merge:
        with open(args.merge) as f:
            mergedata = json.load(f)

    # Set up the output directory, verify write access
    if args.outdir is None:
        args.outdir = os.path.join('dissect', type(model).__name__)
        exit_if_job_done(args.outdir)
        print_progress('Writing output into %s.' % args.outdir)
    os.makedirs(args.outdir, exist_ok=True)
    train_dataset = None

    if not args.gen:
        # Load dataset for classifier case.
        # Load perturbation
        perturbation = numpy.load(
            args.perturbation) if args.perturbation else None
        segrunner = None

        # Load broden dataset
        if args.imagedir is not None:
            dataset = try_to_load_images(args.imagedir, args.imgsize,
                                         perturbation, args.size)
            segrunner = ImageOnlySegRunner(dataset)
        else:
            dataset = try_to_load_broden(args.segments, args.imgsize, 1,
                                         perturbation, args.download,
                                         args.size)
        if dataset is None:
            dataset = try_to_load_multiseg(args.segments, args.imgsize,
                                           perturbation, args.size)
        if dataset is None:
            print_progress('No segmentation dataset found in %s',
                           args.segments)
            print_progress('use --download to download Broden.')
            sys.exit(1)
    else:
        # For segmenter case the dataset is just a random z
        #dataset = z_dataset_for_model(model, args.size)
        #train_dataset = z_dataset_for_model(model, args.size, seed=2)
        dataset = datasets.ImageFolder('dataset/Adissect',
                                       transform=transforms.Compose([
                                           transforms.ToTensor(),
                                           transforms.Normalize(
                                               (0.5, 0.5, 0.5),
                                               (0.5, 0.5, 0.5))
                                       ]))
        train_dataset = dataset
        segrunner = GeneratorSegRunner(autoimport_eval(args.segmenter))
    torch.no_grad()
    # Run dissect
    dissect(args.outdir,
            model,
            dataset,
            train_dataset=train_dataset,
            segrunner=segrunner,
            examples_per_unit=args.examples,
            netname=args.netname,
            quantile_threshold=args.quantile_threshold,
            meta=meta,
            merge=mergedata,
            make_images=args.images,
            make_labels=args.labels,
            make_maxiou=args.maxiou,
            make_covariance=args.covariance,
            make_report=args.report,
            make_row_images=args.images,
            make_single_images=True,
            rank_all_labels=args.rank_all_labels,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            settings=vars(args))

    # Mark the directory so that it's not done again.
    mark_job_done(args.outdir)
Ejemplo n.º 5
0
def main():
    # Training settings
    def strpair(arg):
        p = tuple(arg.split(':'))
        if len(p) == 1:
            p = p + p
        return p

    def intpair(arg):
        p = arg.split(',')
        if len(p) == 1:
            p = p + p
        return tuple(int(v) for v in p)

    parser = argparse.ArgumentParser(
        description='Net dissect utility',
        prog='python -m netdissect',
        epilog=textwrap.dedent(help_epilog),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--model',
                        type=str,
                        default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile',
                        type=str,
                        default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--outdir',
                        type=str,
                        default='dissect',
                        help='directory for dissection output')
    parser.add_argument('--layers',
                        type=strpair,
                        nargs='+',
                        help='space-separated list of layer names to dissect' +
                        ', in the form layername[:reportedname]')
    parser.add_argument('--segments',
                        type=str,
                        default='dataset/broden',
                        help='directory containing segmentation dataset')
    parser.add_argument('--download',
                        action='store_true',
                        default=False,
                        help='downloads Broden dataset if needed')
    parser.add_argument('--imgsize',
                        type=intpair,
                        default=(227, 227),
                        help='input image size to use')
    parser.add_argument('--netname',
                        type=str,
                        default=None,
                        help='name for network in generated reports')
    parser.add_argument('--meta',
                        type=str,
                        nargs='+',
                        help='json files of metadata to add to report')
    parser.add_argument('--examples',
                        type=int,
                        default=20,
                        help='number of image examples per unit')
    parser.add_argument('--size',
                        type=int,
                        default=10000,
                        help='dataset subset size to use')
    parser.add_argument('--broden_version',
                        type=int,
                        default=1,
                        help='broden version number')
    parser.add_argument('--batch_size',
                        type=int,
                        default=100,
                        help='batch size for forward pass')
    parser.add_argument('--num_workers',
                        type=int,
                        default=24,
                        help='number of DataLoader workers')
    parser.add_argument('--no-labels',
                        action='store_true',
                        default=False,
                        help='disables labeling of units')
    parser.add_argument('--no-images',
                        action='store_true',
                        default=False,
                        help='disables generation of unit images')
    parser.add_argument('--single-images',
                        action='store_true',
                        default=False,
                        help='generates single images also')
    parser.add_argument('--no-report',
                        action='store_true',
                        default=False,
                        help='disables generation report summary')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA usage')
    parser.add_argument('--perturbation',
                        default=None,
                        help='filename of perturbation attack to apply')
    parser.add_argument('--add_scale_offset',
                        action='store_true',
                        default=None,
                        help='offsets masks according to stride and padding')
    parser.add_argument('--quiet',
                        action='store_true',
                        default=False,
                        help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()
    args.images = not args.no_images
    args.report = not args.no_report
    args.labels = not args.no_labels

    # Set up console output
    verbose_progress(not args.quiet)

    # Speed up pytorch
    torch.backends.cudnn.benchmark = True

    # Special case: download flag without model to test.
    if args.model is None and args.download:
        from netdissect.broden import ensure_broden_downloaded
        for resolution in [224, 227, 384]:
            ensure_broden_downloaded(args.segments, resolution,
                                     args.broden_version)
        sys.exit(0)

    # Help if broden is not present
    if not os.path.isdir(args.segments):
        print_progress('Segmentation dataset not found at %s.' % args.segments)
        print_progress('Specify dataset directory using --segments [DIR]')
        print_progress('To download Broden, run: netdissect --download')
        sys.exit(1)

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        sys.exit(1)

    # Set up CUDA
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        torch.backends.cudnn.benchmark = True

    model = eval_constructor(args.model)
    # Default add_scale_offset only for AlexNet-looking models.
    if args.add_scale_offset is None:
        args.add_scale_offset = ('Alex' in model.__class__.__name__)

    # Load its state dict
    meta = {}
    if args.pthfile is None:
        print_progress('Dissecting model without pth file.')
    else:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)

    # Update any metadata from files, if any
    if args.meta:
        for mfilename in args.meta:
            with open(mfilename) as f:
                meta.update(json.load(f))

    # Instrument it and prepare it for eval
    if not args.layers:
        print_progress('No layers specified')
        sys.exit(1)
    retain_layers(model, args.layers, args.add_scale_offset)
    model.eval()
    if args.cuda:
        model.cuda()

    # Set up the output directory, verify write access
    if args.outdir is None:
        args.outdir = os.path.join('dissect', type(model).__name__)
        print_progress('Writing output into %s.' % args.outdir)
    os.makedirs(args.outdir, exist_ok=True)

    # Load perturbation
    perturbation = numpy.load(args.perturbation) if args.perturbation else None

    # Load broden dataset
    ds = try_to_load_broden(args.segments, args.imgsize, args.broden_version,
                            perturbation, args.download, args.size)
    if ds is None:
        ds = try_to_load_multiseg(args.segments, args.imgsize, perturbation,
                                  args.size)
    if ds is None:
        print_progress('No segmentation dataset found in %s' % args.segements)
        print_progress('use --download to download Broden.')
        sys.exit(1)

    # Run dissect
    dissect(args.outdir,
            model,
            ds,
            recover_image=ReverseNormalize(IMAGE_MEAN, IMAGE_STDEV),
            examples_per_unit=args.examples,
            netname=args.netname,
            meta=meta,
            make_images=args.images,
            make_labels=args.labels,
            make_report=args.report,
            make_single_images=args.single_images,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            settings=vars(args))
Ejemplo n.º 6
0
def create_instrumented_model(args, **kwargs):
    '''
    Creates an instrumented model out of a namespace of arguments that
    correspond to ArgumentParser command-line args:
      model: a string to evaluate as a constructor for the model.
      pthfile: (optional) filename of .pth file for the model.
      layers: a list of layers to instrument, defaulted if not provided.
      edit: True to instrument the layers for editing.
      gen: True for a generator model.  One-pixel input assumed.
      imgsize: For non-generator models, (y, x) dimensions for RGB input.
      cuda: True to use CUDA.
  
    The constructed model will be decorated with the following attributes:
      input_shape: (usually 4d) tensor shape for single-image input.
      output_shape: 4d tensor shape for output.
      feature_shape: map of layer names to 4d tensor shape for featuremaps.
      retained: map of layernames to tensors, filled after every evaluation.
      ablation: if editing, map of layernames to [0..1] alpha values to fill.
      replacement: if editing, map of layernames to values to fill.

    When editing, the feature value x will be replaced by:
        `x = (replacement * ablation) + (x * (1 - ablation))`
    '''

    args = EasyDict(vars(args), **kwargs)

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        return None
    #if isinstance(args.model, torch.nn.Module):
    #    model = args.model
    #else:
    #    model = autoimport_eval(args.model)
    model = UnetNormalized()
    checkpoint = torch.load('p2p_churches.pth')
    model.load_state_dict(checkpoint)
    model.cuda()
    #model.eval()
    torch.no_grad()

    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Load its state dict
    #meta = {}
    #if getattr(args, 'pthfile', None) is not None:
    #    data = torch.load(args.pthfile)
    #    if 'state_dict' in data:
    #        meta = {}
    #    for key in data:
    #            if isinstance(data[key], numbers.Number):
    #                meta[key] = data[key]
    #        data = data['state_dict']
    #    submodule = getattr(args, 'submodule', None)
    #    if submodule is not None and len(submodule):
    #        remove_prefix = submodule + '.'
    #        data = { k[len(remove_prefix):]: v for k, v in data.items()
    #                if k.startswith(remove_prefix)}
    #        if not len(data):
    #            print_progress('No submodule %s found in %s' %
    #                    (submodule, args.pthfile))
    #            return None
    #    model.load_state_dict(data, strict=not getattr(args, 'unstrict', False))

    # Decide which layers to instrument.
    #if getattr(args, 'layer', None) is not None:
    #    args.layers = [args.layer]
    args.layers = [layer5, layer9, layer12]

    #if getattr(args, 'layers', None) is None:
    #    # Skip wrappers with only one named model
    #    container = model
    #    prefix = ''
    #    while len(list(container.named_children())) == 1:
    #        name, container = next(container.named_children())
    #        prefix += name + '.'
    #    # Default to all nontrivial top-level layers except last.
    #    args.layers = [prefix + name
    #            for name, module in container.named_children()
    #            if type(module).__module__ not in [
    #                # Skip ReLU and other activations.
    #                'torch.nn.modules.activation',
    #                # Skip pooling layers.
    #                'torch.nn.modules.pooling']
    #            ][:-1]
    #    print_progress('Defaulting to layers: %s' % ' '.join(args.layers))

    # Now wrap the model for instrumentation.
    model = InstrumentedModel(model)
    #    model.meta = meta

    # Instrument the layers.
    model.retain_layers(args.layers)
    #model.eval()
    #if args.cuda:
    #  model.cuda()

    # Annotate input, output, and feature shapes
    annotate_model_shapes(model,
                          gen=getattr(args, 'gen', False),
                          imgsize=getattr(args, 'imgsize', None))
    return model
Ejemplo n.º 7
0
def train_ablation(args,
                   corpus,
                   cachefile,
                   model,
                   segmenter,
                   classnum,
                   initial_ablation=None):
    progress = default_progress()
    cachedir = os.path.dirname(cachefile)
    snapdir = os.path.join(cachedir, 'snapshots')
    os.makedirs(snapdir, exist_ok=True)

    # high_replacement = corpus.feature_99[None,:,None,None].cuda()
    high_replacement = (corpus.weighted_mean_present_feature[None, :, None,
                                                             None].cuda())
    high_replacement.requires_grad = False
    for p in model.parameters():
        p.requires_grad = False

    ablation = torch.zeros(high_replacement.shape).cuda()
    if initial_ablation is not None:
        ablation.view(-1)[...] = initial_ablation
    ablation.requires_grad = True
    optimizer = torch.optim.Adam([ablation], lr=0.01)
    start_epoch = 0

    if not args.no_cache:
        for start_epoch in reversed(range(args.train_epochs)):
            snapfile = os.path.join(snapdir, 'epoch-%d.pth' % start_epoch)
            if os.path.exists(snapfile):
                data = torch.load(snapfile)
                with torch.no_grad():
                    ablation[...] = data['ablation'].to(ablation.device)
                    optimizer.load_state_dict(data['optimizer'])
                start_epoch += 1
                break

    update_size = args.train_update_freq * args.train_batch_size
    for epoch in range(start_epoch, args.train_epochs):
        candidate_shuffle = torch.randperm(len(corpus.candidate_sample))
        train_loss = 0
        for batch_num, [pbatch, ploc, cbatch, cloc] in enumerate(
                progress(torch.utils.data.DataLoader(
                    TensorDataset(
                        corpus.object_present_sample,
                        corpus.object_present_location,
                        corpus.candidate_sample[candidate_shuffle],
                        corpus.candidate_location[candidate_shuffle]),
                    batch_size=args.train_batch_size,
                    num_workers=10,
                    shuffle=True,
                    pin_memory=True),
                         desc="ACE opt epoch %d" % epoch)):
            if batch_num % args.train_update_freq == 0:
                optimizer.zero_grad()
            # First, put in zeros for the selected units.  Loss is amount
            # of remaining object.
            loss = ace_loss(segmenter,
                            classnum,
                            model,
                            args.layer,
                            high_replacement,
                            ablation,
                            pbatch,
                            ploc,
                            cbatch,
                            cloc,
                            run_backward=True)
            with torch.no_grad():
                train_loss = train_loss + loss
            if (batch_num + 1) % args.train_update_freq == 0:
                # Third, add some L2 loss to encourage sparsity.
                regularizer = (args.l2_lambda * update_size *
                               ablation.pow(2).sum())
                regularizer.backward()
                optimizer.step()
                with torch.no_grad():
                    ablation.clamp_(0, 1)
                    post_progress(l=(train_loss / update_size).item(),
                                  r=(regularizer / update_size).item())
                    train_loss = 0
        with torch.no_grad():
            total_loss = 0
            for [pbatch, ploc, cbatch,
                 cloc] in progress(torch.utils.data.DataLoader(
                     TensorDataset(corpus.eval_present_sample,
                                   corpus.eval_present_location,
                                   corpus.eval_candidate_sample,
                                   corpus.eval_candidate_location),
                     batch_size=args.inference_batch_size,
                     num_workers=10,
                     shuffle=False,
                     pin_memory=True),
                                   desc="Eval"):
                # First, put in zeros for the selected units.  Loss is amount
                # of remaining object.
                total_loss = total_loss + ace_loss(segmenter,
                                                   classnum,
                                                   model,
                                                   args.layer,
                                                   high_replacement,
                                                   ablation,
                                                   pbatch,
                                                   ploc,
                                                   cbatch,
                                                   cloc,
                                                   run_backward=False)
            avg_loss = (total_loss / args.eval_size).item()
            regularizer = (args.l2_lambda * ablation.pow(2).sum())
            print_progress('Epoch %d Loss %g, Regularizer %g' %
                           (epoch, avg_loss, regularizer))
            print_progress(scale_summary(ablation.view(-1), 10, 3))
        torch.save(
            dict(ablation=ablation,
                 optimizer=optimizer.state_dict(),
                 avg_loss=avg_loss),
            os.path.join(snapdir, 'epoch-%d.pth' % epoch))
        numpy.save(os.path.join(snapdir, 'epoch-%d.npy' % epoch),
                   ablation.detach().cpu().numpy())

    # The output of this phase is this set of scores.
    return ablation.view(-1).detach().cpu().numpy()
Ejemplo n.º 8
0
def main():
    # Training settings
    def strpair(arg):
        p = tuple(arg.split(':'))
        if len(p) == 1:
            p = p + p
        return p

    parser = argparse.ArgumentParser(
        description='Net dissect utility',
        epilog=textwrap.dedent(help_epilog),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--model',
                        type=str,
                        default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile',
                        type=str,
                        default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--outdir',
                        type=str,
                        default='dissect',
                        help='directory for dissection output')
    parser.add_argument('--layers',
                        type=strpair,
                        nargs='+',
                        help='space-separated list of layer names to edit' +
                        ', in the form layername[:reportedname]')
    parser.add_argument('--classes',
                        type=str,
                        nargs='+',
                        help='space-separated list of class names to ablate')
    parser.add_argument('--metric',
                        type=str,
                        default='iou',
                        help='ordering metric for selecting units')
    parser.add_argument('--startcount',
                        type=int,
                        default=1,
                        help='number of units to ablate')
    parser.add_argument('--unitcount',
                        type=int,
                        default=30,
                        help='number of units to ablate')
    parser.add_argument('--segmenter',
                        type=str,
                        default='dataset/broden',
                        help='directory containing segmentation dataset')
    parser.add_argument('--netname',
                        type=str,
                        default=None,
                        help='name for network in generated reports')
    parser.add_argument('--batch_size',
                        type=int,
                        default=5,
                        help='batch size for forward pass')
    parser.add_argument('--size',
                        type=int,
                        default=1000,
                        help='number of images to test')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA usage')
    parser.add_argument('--quiet',
                        action='store_true',
                        default=False,
                        help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()

    # Set up console output
    verbose_progress(not args.quiet)

    # Speed up pytorch
    torch.backends.cudnn.benchmark = True

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        sys.exit(1)

    # Set up CUDA
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        torch.backends.cudnn.benchmark = True

    model = autoimport_eval(args.model)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Load its state dict
    meta = {}
    if args.pthfile is None:
        print_progress('Dissecting model without pth file.')
    else:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)

    # Instrument it and prepare it for eval
    if not args.layers:
        # Skip wrappers with only one named modele
        container = model
        prefix = ''
        while len(list(container.named_children())) == 1:
            name, container = next(container.named_children())
            prefix += name + '.'
        # Default to all nontrivial top-level layers except last.
        args.layers = [
            prefix + name for name, module in container.named_children()
            if type(module).__module__ not in [
                # Skip ReLU and other activations.
                'torch.nn.modules.activation',
                # Skip pooling layers.
                'torch.nn.modules.pooling'
            ]
        ][:-1]
        print_progress('Defaulting to layers: %s' % ' '.join(args.layers))
    edit_layers(model, args.layers)
    model.eval()
    if args.cuda:
        model.cuda()

    # Set up the output directory, verify write access
    if args.outdir is None:
        args.outdir = os.path.join('dissect', type(model).__name__)
        print_progress('Writing output into %s.' % args.outdir)
    os.makedirs(args.outdir, exist_ok=True)
    train_dataset = None

    # Examine first conv in model to determine input feature size.
    first_layer = [
        c for c in model.modules()
        if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
                          torch.nn.Linear))
    ][0]
    # 4d input if convolutional, 2d input if first layer is linear.
    if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
        sample = standard_z_sample(args.size,
                                   first_layer.in_channels)[:, :, None, None]
        train_sample = standard_z_sample(args.size,
                                         first_layer.in_channels,
                                         seed=2)[:, :, None, None]
    else:
        sample = standard_z_sample(args.size, first_layer.in_features)
        train_sample = standard_z_sample(args.size,
                                         first_layer.in_features,
                                         seed=2)
    dataset = TensorDataset(sample)
    train_dataset = TensorDataset(train_sample)
    recovery = autoimport_eval(args.segmenter)

    # Now do the actual work.
    device = next(model.parameters()).device
    labelnames, catnames = (recovery.get_label_and_category_names(dataset))
    label_category = [catnames.index(c) for l, c in labelnames]
    labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}

    segloader = torch.utils.data.DataLoader(dataset,
                                            batch_size=args.batch_size,
                                            num_workers=10,
                                            pin_memory=(device.type == 'cuda'))

    with open(os.path.join(args.outdir, 'dissect.json'), 'r') as f:
        dissect = EasyDict(json.load(f))

    # Index the dissection layers by layer name.
    dissect_layer = {lrec.layer: lrec for lrec in dissect.layers}

    # First, collect a baseline
    for l in model.ablation:
        model.ablation[l] = None
    baseline = count_segments(recovery, segloader, model)

    # For each sort-order, do an ablation
    progress = default_progress()
    for classname in progress(args.classes):
        post_progress(c=classname)
        for layername in progress(model.ablation):
            post_progress(l=layername)
            rankname = '%s-%s' % (classname, args.metric)
            measurements = {}
            classnum = labelnum_from_name[classname]
            try:
                ranking = next(r for r in dissect_layer[layername].rankings
                               if r.name == rankname)
            except:
                print('%s not found' % rankname)
                sys.exit(1)
            ordering = numpy.argsort(ranking.score)
            # Check if already done
            ablationdir = os.path.join(args.outdir, layername, 'ablation')
            if os.path.isfile(os.path.join(ablationdir, '%s.json' % rankname)):
                with open(os.path.join(ablationdir,
                                       '%s.json' % rankname)) as f:
                    data = EasyDict(json.load(f))
                # If the unit ordering is not the same, something is wrong
                if not all(a == o
                           for a, o in zip(data.ablation_units, ordering)):
                    import pdb
                    pdb.set_trace()
                    continue
                if len(data.ablation_effects) >= args.unitcount:
                    continue  # file already done.
                measurements = data.ablation_effects
            for count in progress(range(args.startcount,
                                        min(args.unitcount, len(ordering)) +
                                        1),
                                  desc='units'):
                if str(count) in measurements:
                    continue
                ablation = numpy.zeros(len(ranking.score), dtype='float32')
                ablation[ordering[:count]] = 1
                for l in model.ablation:
                    model.ablation[l] = ablation if layername == l else None
                m = count_segments(recovery, segloader, model)[classnum].item()
                print_progress(
                    '%s %s %d units (#%d), %g -> %g' %
                    (layername, rankname, count, ordering[count - 1].item(),
                     baseline[classnum].item(), m))
                measurements[str(count)] = m
            os.makedirs(ablationdir, exist_ok=True)
            with open(os.path.join(ablationdir, '%s.json' % rankname),
                      'w') as f:
                json.dump(
                    dict(classname=classname,
                         classnum=classnum,
                         baseline=baseline[classnum].item(),
                         layer=layername,
                         metric=args.metric,
                         ablation_units=ordering.tolist(),
                         ablation_effects=measurements), f)