Ejemplo n.º 1
0
 def compute_conditional_samples(batch, *args):
     image_batch = batch.cuda()
     _ = model(image_batch)
     acts = model.retained_layer(layername)
     seg = segmodel.segment_batch(renorm(image_batch), downsample=4)
     hacts = upfn(acts)
     return tally.conditional_samples(hacts, seg)
Ejemplo n.º 2
0
def compute_conditional_indicator(batch, *args):
    image_batch = batch.cuda()
    seg = segmodel.segment_batch(renorm(image_batch), downsample=4)
    _ = model(image_batch)
    acts = model.retained_layer(layername)
    hacts = upfn(acts)
    iacts = (hacts > level_at_99).float() # indicator where > 0.99 percentile.
    return tally.conditional_samples(iacts, seg)
Ejemplo n.º 3
0
 def compute_conditional_indicator(batch, *args):
     data_batch = batch.cuda()
     out_batch = model(data_batch)
     image_batch = out_batch if is_generator else renorm(data_batch)
     seg = segmodel.segment_batch(image_batch, downsample=4)
     acts = model.retained_layer(layername)
     hacts = upfn(acts)
     iacts = (hacts > level_at_99).float() # indicator
     return tally.conditional_samples(iacts, seg)
 def compute_selected_segments(batch, *args):
     img, seg = batch
     #     show(iv.segmentation(seg))
     image_batch = img.cuda()
     seg_batch = seg.cuda()
     _ = self.model(image_batch)
     acts = self.model.retained_layer(self.layername)
     hacts = self.upfn(acts)
     iacts = (hacts >
              level_at_99).float()  # indicator where > 0.99 percentile.
     return tally.conditional_samples(iacts, seg_batch)