Ejemplo n.º 1
0
def test_flip_state_fock_infinite():
    hi = Fock(N=2)
    rng = nk.jax.PRNGSeq(1)
    N_batches = 20

    states = hi.random_state(rng.next(), N_batches, dtype=jnp.int64)

    ids = jnp.asarray(
        jnp.floor(hi.size *
                  jax.random.uniform(rng.next(), shape=(N_batches, ))),
        dtype=int,
    )

    new_states, old_vals = nk.hilbert.random.flip_state(
        hi, rng.next(), states, ids)

    assert new_states.shape == states.shape

    assert np.all(states >= 0)

    states_np = np.asarray(states)
    states_new_np = np.array(new_states)

    for (row, col) in enumerate(ids):
        states_new_np[row, col] = states_np[row, col]

    np.testing.assert_allclose(states_np, states_new_np)
Ejemplo n.º 2
0
def test_inhomogeneous_fock():
    hi1 = Fock(n_max=7, N=40)
    hi2 = Fock(n_max=2, N=40)
    hi = hi1 * hi2

    assert hi.size == hi1.size + hi2.size

    for i in range(0, 40):
        assert hi.size_at_index(i) == 8
        assert hi.states_at_index(i) == list(range(8))

    for i in range(40, 80):
        assert hi.size_at_index(i) == 3
        assert hi.states_at_index(i) == list(range(3))
Ejemplo n.º 3
0
def _reorder_kronecker_product(hi, mat, acting_on) -> Tuple[Array, Tuple]:
    """
    Reorders the matrix resulting from a kronecker product of several
    operators in such a way to sort acting_on.

    A conceptual example is the following:
    if `mat = Â ⊗ B̂ ⊗ Ĉ` and `acting_on = [[2],[1],[3]`
    you will get `result = B̂ ⊗ Â ⊗ Ĉ, [[1], [2], [3]].

    However, essentially, A,B,C represent some operators acting on
    thei sub-space acting_on[1], [2] and [3] of the hilbert space.

    This function also handles any possible set of values in acting_on.

    The inner logic uses the Fock.all_states(), number_to_state and
    state_to_number to perform the re-ordering.
    """
    acting_on_sorted = np.sort(acting_on)
    if np.array_equal(acting_on_sorted, acting_on):
        return mat, acting_on

    # could write custom binary <-> int logic instead of using Fock...
    # Since i need to work with bit-strings (where instead of bits i
    # have integers, in order to support arbitrary size spaces) this
    # is exactly what hilbert.to_number() and viceversa do.

    # target ordering binary representation
    hi_subspace = Fock(hi.shape[acting_on_sorted[0]] - 1)
    for site in acting_on_sorted[1:]:
        hi_subspace = hi_subspace * Fock(hi.shape[site] - 1)

    hi_unsorted_subspace = Fock(hi.shape[acting_on[0]] - 1)
    for site in acting_on[1:]:
        hi_unsorted_subspace = hi_unsorted_subspace * Fock(hi.shape[site] - 1)

    # find how to map target ordering back to unordered
    acting_on_unsorted_ids = np.zeros(len(acting_on), dtype=np.intp)
    for (i, site) in enumerate(acting_on):
        acting_on_unsorted_ids[i] = np.argmax(site == acting_on_sorted)

    # now it is valid that
    # acting_on_sorted == acting_on[acting_on_unsorted_ids]

    # generate n-bit strings in the target ordering
    v = hi_subspace.all_states()

    # convert them to origin (unordered) ordering
    v_unsorted = v[:, acting_on_unsorted_ids]
    # convert the unordered bit-strings to numbers in the target space.
    n_unsorted = hi_unsorted_subspace.states_to_numbers(v_unsorted)

    # reorder the matrix
    mat_sorted = mat[n_unsorted, :][:, n_unsorted]

    return mat_sorted, tuple(acting_on_sorted)
Ejemplo n.º 4
0
def _reorder_matrix(hi, mat, acting_on):
    acting_on_sorted = np.sort(acting_on)
    if np.all(acting_on_sorted == acting_on):
        return mat, acting_on

    acting_on_sorted_ids = np.argsort(acting_on)

    # could write custom binary <-> int logic instead of using Fock...
    # Since i need to work with bit-strings (where instead of bits i
    # have integers, in order to support arbitrary size spaces) this
    # is exactly what hilbert.to_number() and viceversa do.

    # target ordering binary representation
    hi_subspace = Fock(hi.shape[acting_on_sorted[0]] - 1)
    for site in acting_on_sorted[1:]:
        hi_subspace = Fock(hi.shape[site] - 1) * hi_subspace

    # find how to map target ordering back to unordered
    acting_on_unsorted_ids = np.zeros(len(acting_on), dtype=np.intp)
    for (i, site) in enumerate(acting_on):
        acting_on_unsorted_ids[i] = np.argmax(site == acting_on_sorted)

    # now it is valid that
    # acting_on_sorted == acting_on[acting_on_unsorted_ids]

    # generate n-bit strings in the target ordering
    v = hi_subspace.all_states()

    # convert them to origin (unordered) ordering
    v_unsorted = v[:, acting_on_unsorted_ids]
    # convert the unordered bit-strings to numbers in the target space.
    n_unsorted = hi_subspace.states_to_numbers(v_unsorted)

    # reorder the matrix
    mat_sorted = mat[n_unsorted, :][:, n_unsorted]

    return mat_sorted, acting_on_sorted
Ejemplo n.º 5
0
def test_random_states_fock_infinite():
    hi = Fock(N=2)
    rstate = hi.random_state(jax.random.PRNGKey(14), 20)
    assert np.all(rstate >= 0)
    assert rstate.shape == (20, 2)
Ejemplo n.º 6
0
# Spin 1/2 with total Sz
hilberts["Spin[0.5, N=20, total_sz=1"] = Spin(s=0.5, total_sz=1.0, N=20)
hilberts["Spin[0.5, N=5, total_sz=-1.5"] = Spin(s=0.5, total_sz=-1.5, N=5)

# Spin 1/2 with total Sz
hilberts["Spin 1 with total Sz, even sites"] = Spin(s=1.0, total_sz=5.0, N=6)

# Spin 1/2 with total Sz
hilberts["Spin 1 with total Sz, odd sites"] = Spin(s=1.0, total_sz=2.0, N=7)

# Spin 3
hilberts["Spin 3"] = Spin(s=3, N=25)

# Boson
hilberts["Fock"] = Fock(n_max=5, N=41)

# Boson with total number
hilberts["Fock with total number"] = Fock(n_max=3, n_particles=110, N=120)

# Composite Fock
hilberts["Fock * Fock (indexable)"] = Fock(n_max=5, N=4) * Fock(n_max=7, N=4)
hilberts["Fock * Fock (non-indexable)"] = Fock(n_max=4, N=40) * Fock(n_max=7,
                                                                     N=40)

# Qubit
hilberts["Qubit"] = nk.hilbert.Qubit(100)

# Custom Hilbert
hilberts["Custom Hilbert"] = CustomHilbert(local_states=[-1232, 132, 0], N=70)
Ejemplo n.º 7
0
# Spin 1/2 with total Sz
hilberts["Spin[0.5, N=20, total_sz=1"] = Spin(s=0.5, total_sz=1.0, N=20)
hilberts["Spin[0.5, N=5, total_sz=-1.5"] = Spin(s=0.5, total_sz=-1.5, N=5)

# Spin 1/2 with total Sz
hilberts["Spin 1 with total Sz, even sites"] = Spin(s=1.0, total_sz=5.0, N=6)

# Spin 1/2 with total Sz
hilberts["Spin 1 with total Sz, odd sites"] = Spin(s=1.0, total_sz=2.0, N=7)

# Spin 3
hilberts["Spin 3"] = Spin(s=3, N=25)

# Boson
hilberts["Fock"] = Fock(n_max=5, N=41)

# Boson with total number
hilberts["Fock with total number"] = Fock(n_max=3, n_particles=110, N=120)

# Qubit
hilberts["Qubit"] = nk.hilbert.Qubit(100)

# Custom Hilbert
hilberts["Custom Hilbert"] = CustomHilbert(local_states=[-1232, 132, 0], N=70)

# Heisenberg 1d
hilberts["Heisenberg 1d"] = Spin(s=0.5, total_sz=0.0, N=20)

# Bose Hubbard
hilberts["Bose Hubbard"] = Fock(n_max=4, n_particles=20, N=20)