Ejemplo n.º 1
0
def Alex_net(image, reuse=tf.AUTO_REUSE, keep_prop=0.5):
    image = tf.reshape(image, [-1, 224, 224, 3])
    with tf.variable_scope(name_or_scope='Alex', reuse=reuse):
        arg_scope = alexnet.alexnet_v2_arg_scope()
        with slim.arg_scope(arg_scope):
            logits, end_point = alexnet.alexnet_v2(image,
                                                   1000,
                                                   is_training=True,
                                                   dropout_keep_prob=keep_prop)
            probs = tf.nn.softmax(logits)  # probabilities
    return logits, probs, end_point
Ejemplo n.º 2
0
def build_train_op(image_tensor, label_tensor, is_training):
    alexnet_argscope = alexnet_v2_arg_scope(weight_decay=FLAGS.weight_decay)
    global_step = tf.get_variable(name="global_step", shape=[], dtype=tf.int32, trainable=False)
    with slim.arg_scope(alexnet_argscope):
        logits, end_points = alexnet_v2(image_tensor, is_training=is_training, num_classes=100)
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label_tensor))
    accuracy = tf.reduce_sum(tf.cast(tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), label_tensor),tf.int32))
    end_points['loss'], end_points['accuracy'] = loss, accuracy
    if is_training:
        optimizer = tf.train.AdadeltaOptimizer(learning_rate=FLAGS.learning_rate)
        train_op = optimizer.minimize(loss, global_step=global_step)
        return train_op, end_points
    else:
        return None, end_points
Ejemplo n.º 3
0
def predict(models_path, image_dir, labels_nums, data_format):
    [batch_size, resize_height, resize_width, depths] = data_format

    # labels = np.loadtxt(labels_filename, str, delimiter='\t')
    input_images = tf.placeholder(
        dtype=tf.float32,
        shape=[None, resize_height, resize_width, depths],
        name='input')

    # Define the model:
    with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
        out, end_points = alexnet.alexnet_v2(inputs=input_images,
                                             num_classes=labels_nums,
                                             dropout_keep_prob=1.0,
                                             is_training=False)

    # 将输出结果进行softmax分布,再求最大概率所属类别

    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess, models_path)
    images_list = glob.glob(os.path.join(image_dir, '*.jpg'))
    for image_path in images_list:
        im = read_image(image_path,
                        resize_height,
                        resize_width,
                        normalization=True)
        im = im[np.newaxis, :]
        #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0})
        pre_score = sess.run([out], feed_dict={input_images: im})
        mean_std = statistic.get_score(pre_score, type="mean_std")
        # print("image_path:{},pre_score:{},mean_std:{}".format(image_path,pre_score,mean_std))

        print("image_path:{},mean_std:{}".format(image_path, mean_std))

    sess.close()
Ejemplo n.º 4
0
def classify_image(filepath):
    with tf.Graph().as_default():
        image = open(filepath, 'rb')

        # Open specified url and load image as a string
        image_string = image.read()

        # Decode string into matrix with intensity values
        image = tf.image.decode_jpeg(image_string, channels=3)

        # Resize the input image, preserving the aspect ratio
        # and make a central crop of the resulted image.
        # The crop will be of the size of the default image size of
        # the network.
        processed_image = vgg_preprocessing.preprocess_image(image,
                                                             image_size,
                                                             image_size,
                                                             is_training=False)

        # Networks accept images in batches.
        # The first dimension usually represents the batch size.
        # In our case the batch size is one.
        processed_images = tf.expand_dims(processed_image, 0)

        # Create the model, use the default arg scope to configure
        # the batch norm parameters. arg_scope is a very convenient
        # feature of slim library -- you can define default
        # parameters for layers -- like stride, padding etc.
        with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
            logits, _ = alexnet.alexnet_v2(processed_images,
                                           num_classes=6,
                                           is_training=False)

        # In order to get probabilities we apply softmax on the output.
        probabilities = tf.nn.softmax(logits)

        # Create a function that reads the network weights
        # from the checkpoint file that you downloaded.
        # We will run it in session later.
        init_fn = slim.assign_from_checkpoint_fn(
            os.path.join(checkpoints_dir, 'model.ckpt-100000'),
            slim.get_model_variables('alexnet_v2'))

        with tf.Session() as sess:
            # Load weights
            init_fn(sess)

            # We want to get predictions, image as numpy matrix
            # and resized and cropped piece that is actually
            # being fed to the network.
            np_image, network_input, probabilities = sess.run(
                [image, processed_image, probabilities])
            probabilities = probabilities[0, 0:]
            sorted_inds = [
                i[0]
                for i in sorted(enumerate(-probabilities), key=lambda x: x[1])
            ]

        for i in range(6):
            index = sorted_inds[i]
            print('Probability %0.2f => [%s]' %
                  (probabilities[index], names[index]))

    return sorted_inds[0], probabilities
Ejemplo n.º 5
0
def train(train_filename, train_images_dir, train_log_step, train_param,
          val_filename, val_images_dir, val_log_step, labels_nums, data_shape,
          snapshot, snapshot_prefix):
    '''
    :param train_record_file: 训练的tfrecord文件
    :param train_log_step: 显示训练过程log信息间隔
    :param train_param: train参数
    :param val_record_file: 验证的tfrecord文件
    :param val_log_step: 显示验证过程log信息间隔
    :param val_param: val参数
    :param labels_nums: labels数
    :param data_shape: 输入数据shape
    :param snapshot: 保存模型间隔
    :param snapshot_prefix: 保存模型文件的前缀名
    :return:
    '''
    [base_lr, max_steps] = train_param
    [batch_size, resize_height, resize_width, depths] = data_shape

    # # 从record中读取图片和labels数据
    tf_image, tf_labels = read_images(train_filename,
                                      train_images_dir,
                                      data_shape,
                                      shuffle=True,
                                      type='normalization')
    train_images_batch, train_labels_batch = get_batch_images(
        tf_image,
        tf_labels,
        batch_size=batch_size,
        labels_nums=labels_nums,
        one_hot=False,
        shuffle=True)

    # Define the model:
    with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
        out, end_points = alexnet.alexnet_v2(inputs=input_images,
                                             num_classes=labels_nums,
                                             dropout_keep_prob=keep_prob,
                                             is_training=is_training)

    loss = tf.reduce_sum(tf.squared_difference(x=out, y=input_labels))
    # loss1=tf.squared_difference(x=out,y=input_labels)

    # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=y))
    train_op = tf.train.AdamOptimizer(learning_rate=base_lr).minimize(loss)

    # tf.losses.add_loss(loss1)
    # # slim.losses.add_loss(my_loss)
    # loss = tf.losses.get_total_loss(add_regularization_losses=True)  # 添加正则化损失loss=2.2
    # # Specify the optimization scheme:
    # optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr)
    # # create_train_op that ensures that when we evaluate it to get the loss,
    # # the update_ops are done and the gradient updates are computed.
    # train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer)

    saver = tf.train.Saver()
    max_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(max_steps + 1):
            batch_input_images, batch_input_labels = sess.run(
                [train_images_batch, train_labels_batch])
            _, train_loss = sess.run(
                [train_op, loss],
                feed_dict={
                    input_images: batch_input_images,
                    input_labels: batch_input_labels,
                    keep_prob: 0.5,
                    is_training: True
                })
            if i % train_log_step == 0:
                print("%s: Step [%d]  train Loss : %f" %
                      (datetime.now(), i, train_loss))
            # # train测试(这里仅测试训练集的一个batch)
            # if i%train_log_step == 0:
            #     train_acc = sess.run(accuracy, feed_dict={input_images:batch_input_images,
            #                                               input_labels: batch_input_labels,
            #                                               keep_prob:1.0, is_training: False})
            #     print "%s: Step [%d]  train Loss : %f, training accuracy :  %g" % (datetime.now(), i, train_loss, train_acc)
            #
            # # val测试(测试全部val数据)
            # if i%val_log_step == 0:
            #     _, train_loss = sess.run([train_step, loss], feed_dict={input_images: batch_input_images,
            #                                                             input_labels: batch_input_labels,
            #                                                             keep_prob: 1.0, is_training: False})
            #     print "%s: Step [%d]  val Loss : %f, val accuracy :  %g" % (datetime.now(), i, mean_loss, mean_acc)
            #
            # 模型保存:每迭代snapshot次或者最后一次保存模型
            if (i % snapshot == 0 and i > 0) or i == max_steps:
                print('-----save:{}-{}'.format(snapshot_prefix, i))
                saver.save(sess, snapshot_prefix, global_step=i)
            # # 保存val准确率最高的模型
            # if mean_acc>max_acc and mean_acc>0.5:
            #     max_acc=mean_acc
            #     path = os.path.dirname(snapshot_prefix)
            #     best_models=os.path.join(path,'best_models_{}_{:.4f}.ckpt'.format(i,max_acc))
            #     print('------save:{}'.format(best_models))
            #     saver.save(sess, best_models)

        coord.request_stop()
        coord.join(threads)
Ejemplo n.º 6
0
    return dataset, images, labels


graph = tf.Graph()
with graph.as_default():
    tf.logging.set_verbosity(tf.logging.INFO)

    dataset, images, labels = getImageBatchAndOneHotLabels(
        dataset_dir, 'train', num_readers, num_preprocessing_threads,
        batch_size)
    _, images_val, labels_val = getImageBatchAndOneHotLabels(
        dataset_dir, 'validation', 2, 2, batch_size)

    # Create Model network and endpoints

    with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
        logits, _ = alexnet.alexnet_v2(images, num_classes=dataset.num_classes)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            logits_val, _ = alexnet.alexnet_v2(images_val,
                                               num_classes=dataset.num_classes)

    #Metrics
    accuracy_validation = slim.metrics.accuracy(
        tf.to_int32(tf.argmax(logits_val, 1)),
        tf.to_int32(tf.argmax(labels_val, 1)))
    top5_accuracy = tf.metrics.mean(
        tf.nn.in_top_k(logits_val, tf.to_int32(tf.argmax(labels_val, 1)), k=5))

    # Added Loss Function
    tf.losses.softmax_cross_entropy(labels, logits)
Ejemplo n.º 7
0
def train(run_dir,
          master,
          task_id,
          num_readers,
          from_graspnet_checkpoint,
          dataset_dir,
          checkpoint_dir,
          save_summaries_steps,
          save_interval_secs,
          num_preprocessing_threads,
          num_steps,
          hparams,
          scope='graspnet'):
    for path in [run_dir]:
        if not tf.gfile.Exists(path):
            tf.gfile.Makedirs(path)
    hparams_filename = os.path.join(run_dir, 'hparams.json')
    with tf.gfile.FastGFile(hparams_filename, 'w') as f:
        f.write(hparams.to_json())
    with tf.Graph().as_default():
        with tf.device(tf.train.replica_device_setter(task_id)):
            global_step = slim.get_or_create_global_step()
            images, class_labels, theta_labels = get_dataset(
                dataset_dir, num_readers, num_preprocessing_threads, hparams)
            '''
            with slim.arg_scope(vgg.vgg_arg_scope()):
                net, end_points = vgg.vgg_16(inputs=images,
                                             num_classes=num_classes,
                                             is_training=True,
                                             dropout_keep_prob=0.7,
                                             scope=scope)
            '''
            with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
                net, end_points = alexnet.alexnet_v2(inputs=images,
                                                     num_classes=num_classes,
                                                     is_training=True,
                                                     dropout_keep_prob=0.7,
                                                     scope=scope)
            loss, accuracy = create_loss(net, class_labels, theta_labels)
            learning_rate = hparams.learning_rate
            if hparams.lr_decay_step:
                learning_rate = tf.train.exponential_decay(
                    hparams.learning_rate,
                    slim.get_or_create_global_step(),
                    decay_steps=hparams.lr_decay_step,
                    decay_rate=hparams.lr_decay_rate,
                    staircase=True)
            tf.summary.scalar('Learning_rate', learning_rate)
            optimizer = tf.train.GradientDescentOptimizer(learning_rate)
            train_op = slim.learning.create_train_op(loss, optimizer)
            add_summary(images, end_points, loss, accuracy, scope=scope)
            summary_op = tf.summary.merge_all()
            variable_map = restore_map(
                from_graspnet_checkpoint=from_graspnet_checkpoint,
                scope=scope,
                model_name=hparams.model_name,
                checkpoint_exclude_scope='fc8')
            init_saver = tf.train.Saver(variable_map)

            def initializer_fn(sess):
                init_saver.restore(sess, checkpoint_dir)
                tf.logging.info('Successfully load pretrained checkpoint.')

            init_fn = initializer_fn
            session_config = tf.ConfigProto(allow_soft_placement=True,
                                            log_device_placement=False)
            session_config.gpu_options.allow_growth = True
            saver = tf.train.Saver(
                keep_checkpoint_every_n_hours=save_interval_secs,
                max_to_keep=100)

            slim.learning.train(
                train_op,
                logdir=run_dir,
                master=master,
                global_step=global_step,
                session_config=session_config,
                # init_fn=init_fn,
                summary_op=summary_op,
                number_of_steps=num_steps,
                startup_delay_steps=15,
                save_summaries_secs=save_summaries_steps,
                saver=saver)