def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' #---------------------------------------------------# # 计算先验框的数量和种类的数量 #---------------------------------------------------# num_anchors = len(self.anchors) num_classes = len(self.class_names) #---------------------------------------------------------# # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。 # 否则先构建模型再载入 #---------------------------------------------------------# try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes, self.phi) self.yolo_model.load_weights(self.model_path) else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # 画框设置不同的颜色 hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) # 打乱颜色 np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.input_image_shape = K.placeholder(shape=(2, )) #---------------------------------------------------------# # 在yolo_eval函数中,我们会对预测结果进行后处理 # 后处理的内容包括,解码、非极大抑制、门限筛选等 #---------------------------------------------------------# boxes, scores, classes = yolo_eval( self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, max_boxes=self.max_boxes, score_threshold=self.score, iou_threshold=self.iou, letterbox_image=self.letterbox_image) return boxes, scores, classes
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # 计算anchor数量 num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors == 6 # default setting # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。 # 否则先构建模型再载入 try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights( self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # 画框设置不同的颜色 hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) # 打乱颜色 np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.input_image_shape = K.placeholder(shape=(2, )) #声明一个定义输入图片尺寸的张量 """ yolo_outputs #模型输出,格式如下[(?,13,13,255)(?,26,26,255)(?,52,52,255)] ?:bitch size; 13、26、52:多尺度预测; 255:预测值(3*(80+5)) anchors, #[(10,13),(16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198),(373,326)] num_classes, #类别个数,coco集80类 image_shape, #placeholder类型的TF参数,默认(416, 416); max_boxes=20, #每张图每类最多检测到20个框同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值 score_threshold=.6, #框置信度阈值,小于阈值的框被删除,需要的框较多,则调低阈值,需要的框较少,则调高阈值; iou_threshold=.5): #同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值 """ boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
def generate(self): # 打开文件 model_path = os.path.expanduser(self.model_path) # 判断文件夹是否有.h5文件 assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # 计算anchor数量 num_anchors = len(self.anchors) # 9 num_classes = len(self.class_names) # 80 # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。 # 否则先构建模型再载入 try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes) self.yolo_model.load_weights(self.model_path) else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # 画框设置不同的颜色 hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) # 打乱颜色 np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.input_image_shape = K.placeholder(shape=(2, )) # 讲计算结果进行转化,得出结果 boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, max_boxes=self.max_boxes, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
def generate(self): score = CONFIG.DETECT.SCORE iou = CONFIG.DETECT.IOU model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' num_anchors = len(self.anchors) num_classes = len(self.class_names) try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes) self.yolo_model.load_weights(self.model_path) else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors / len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # draw bounding boxes hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) # random color np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.input_image_shape = K.placeholder(shape=(2,)) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, score_threshold=score, iou_threshold=iou) return boxes, scores, classes
def generate(self): ''' Parameters ---------- Returns ------- boxes: scores: classes: ''' model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # 计算anchor数量 num_anchors = len(self.anchors) num_classes = len(self.class_names) # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。 # 否则先构建模型再载入 try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes) self.yolo_model.load_weights(self.model_path) else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # 画框设置不同的颜色,每个类设置一种颜色 # colors:array, shape=(20, 3), eg:[(0,178,255), (255,153,0), ..., (255,0,0)] hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) # 打乱颜色 np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) # 根据检测参数,过滤框 # <tf.Tensor 'Placeholder_366:0' shape=(2,) dtype=float32> self.input_image_shape = K.placeholder(shape=(2, )) # 图片预测 boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes