Ejemplo n.º 1
0
    def build_egomotion_test_graph(self):
        """Builds egomotion model reading from placeholders."""
        input_image_stack = tf.placeholder(
            tf.float32,
            [1, self.img_height, self.img_width, self.seq_length * 3],
            name='raw_input')
        input_bottleneck_stack = None

        if self.imagenet_norm:
            im_mean = tf.tile(
                tf.constant(reader.IMAGENET_MEAN), multiples=[self.seq_length])
            im_sd = tf.tile(
                tf.constant(reader.IMAGENET_SD), multiples=[self.seq_length])
            input_image_stack = (input_image_stack - im_mean) / im_sd

        if self.joint_encoder:
            # Pre-compute embeddings here.
            with tf.variable_scope('depth_prediction', reuse=True):
                input_bottleneck_stack = []
                encoder_selected = nets.encoder(self.architecture)
                for i in range(self.seq_length):
                    input_image = input_image_stack[:, :, :, i * 3:(i + 1) * 3]
                    tf.get_variable_scope().reuse_variables()
                    embedding, _ = encoder_selected(
                        target_image=input_image,
                        weight_reg=self.weight_reg,
                        is_training=True)
                    input_bottleneck_stack.append(embedding)
                input_bottleneck_stack = tf.concat(input_bottleneck_stack, axis=3)

        with tf.variable_scope('egomotion_prediction'):
            est_egomotion = nets.egomotion_net(
                image_stack=input_image_stack,
                disp_bottleneck_stack=input_bottleneck_stack,
                joint_encoder=self.joint_encoder,
                seq_length=self.seq_length,
                weight_reg=self.weight_reg,
                same_trans_rot_scaling=self.same_trans_rot_scaling)
        self.input_image_stack = input_image_stack
        self.est_egomotion = est_egomotion
Ejemplo n.º 2
0
  def build_egomotion_test_graph(self):
    """Builds egomotion model reading from placeholders."""
    input_image_stack = tf.placeholder(
        tf.float32,
        [1, self.img_height, self.img_width, self.seq_length * 3],
        name='raw_input')
    input_bottleneck_stack = None

    if self.imagenet_norm:
      im_mean = tf.tile(
          tf.constant(reader.IMAGENET_MEAN), multiples=[self.seq_length])
      im_sd = tf.tile(
          tf.constant(reader.IMAGENET_SD), multiples=[self.seq_length])
      input_image_stack = (input_image_stack - im_mean) / im_sd

    if self.joint_encoder:
      # Pre-compute embeddings here.
      with tf.variable_scope('depth_prediction', reuse=True):
        input_bottleneck_stack = []
        encoder_selected = nets.encoder(self.architecture)
        for i in range(self.seq_length):
          input_image = input_image_stack[:, :, :, i * 3:(i + 1) * 3]
          tf.get_variable_scope().reuse_variables()
          embedding, _ = encoder_selected(
              target_image=input_image,
              weight_reg=self.weight_reg,
              is_training=True)
          input_bottleneck_stack.append(embedding)
        input_bottleneck_stack = tf.concat(input_bottleneck_stack, axis=3)

    with tf.variable_scope('egomotion_prediction'):
      est_egomotion = nets.egomotion_net(
          image_stack=input_image_stack,
          disp_bottleneck_stack=input_bottleneck_stack,
          joint_encoder=self.joint_encoder,
          seq_length=self.seq_length,
          weight_reg=self.weight_reg)
    self.input_image_stack = input_image_stack
    self.est_egomotion = est_egomotion
Ejemplo n.º 3
0
  def build_egomotion_test_graph(self):
    """Builds egomotion model reading from placeholders."""
    print('EGOMOTION PROCESS')
    input_image_stack = tf.placeholder(
        tf.float32,
        [1, self.img_height, self.img_width, self.seq_length * 3],
        name='raw_input')
    input_bottleneck_stack = None

    if self.imagenet_norm:
      im_mean = tf.tile(
          tf.constant(reader.IMAGENET_MEAN), multiples=[self.seq_length])
      im_sd = tf.tile(
          tf.constant(reader.IMAGENET_SD), multiples=[self.seq_length])
      input_image_stack = (input_image_stack - im_mean) / im_sd

    if self.joint_encoder:
      # Pre-compute embeddings here.
      with tf.variable_scope('depth_prediction', reuse=True):
        input_bottleneck_stack = []
        encoder_selected = nets.encoder(self.architecture)
        for i in range(self.seq_length):
          input_image = input_image_stack[:, :, :, i * 3:(i + 1) * 3]
          tf.get_variable_scope().reuse_variables()
          embedding, _ = encoder_selected(
              target_image=input_image,
              weight_reg=self.weight_reg,
              is_training=True)
          input_bottleneck_stack.append(embedding)
        input_bottleneck_stack = tf.concat(input_bottleneck_stack, axis=3)

    with tf.variable_scope('egomotion_prediction'):
      est_egomotion = nets.egomotion_net(
          image_stack=input_image_stack,
          disp_bottleneck_stack=input_bottleneck_stack,
          joint_encoder=self.joint_encoder,
          seq_length=self.seq_length,
          weight_reg=self.weight_reg)

      # sess = tf.Session()
      # with sess.as_default():
      #   tensor_new = sess.run(est_egomotion)
      #   print(tensor_new)

      # with tf.Session() as sess:
      #   init = tf.global_variables_initializer()
      #   sess.run(init)
      #   print(est_egomotion.eval())
      print('oke oce')
      print(est_egomotion.get_shape()) # Call the shape of the tensor

      # x = tf.Print(est_egomotion, [est_egomotion])
      # sess = tf.InteractiveSession()
      # sess.run(x)

      # aselole = tf.Print(est_egomotion, [est_egomotion], "ehehhe")
      # sess = tf.Session()
      # print(sess.run(aselole))

      print('Flag 1')
      print('est_egomotionssss = ', est_egomotion)

    print('Flag 2')
    print(est_egomotion)

    # sess = tf.Session()
    # with sess.as_default():
    #   tensor_new = sess.run(egomotion_prediction)
    #   print(tensor_new)

    self.input_image_stack = input_image_stack
    self.est_egomotion = est_egomotion
    print('est_egomotionssss = ', self.est_egomotion)