def testModelHasExpectedNumberOfParameters(self):
   batch_size = 5
   height, width = 224, 224
   inputs = tf.random_uniform((batch_size, height, width, 3))
   with slim.arg_scope(inception.inception_v1_arg_scope()):
     inception.inception_v1_base(inputs)
   total_params, _ = slim.model_analyzer.analyze_vars(
       slim.get_model_variables())
   self.assertAlmostEqual(5607184, total_params)
  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v1_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {'Conv2d_1a_7x7': [5, 112, 112, 64],
                        'MaxPool_2a_3x3': [5, 56, 56, 64],
                        'Conv2d_2b_1x1': [5, 56, 56, 64],
                        'Conv2d_2c_3x3': [5, 56, 56, 192],
                        'MaxPool_3a_3x3': [5, 28, 28, 192],
                        'Mixed_3b': [5, 28, 28, 256],
                        'Mixed_3c': [5, 28, 28, 480],
                        'MaxPool_4a_3x3': [5, 14, 14, 480],
                        'Mixed_4b': [5, 14, 14, 512],
                        'Mixed_4c': [5, 14, 14, 512],
                        'Mixed_4d': [5, 14, 14, 512],
                        'Mixed_4e': [5, 14, 14, 528],
                        'Mixed_4f': [5, 14, 14, 832],
                        'MaxPool_5a_2x2': [5, 7, 7, 832],
                        'Mixed_5b': [5, 7, 7, 832],
                        'Mixed_5c': [5, 7, 7, 1024]}

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_5c, _ = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_6c, end_points = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
 def testBuildOnlyUptoFinalEndpoint(self):
   batch_size = 5
   height, width = 224, 224
   endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                'Mixed_5c']
   for index, endpoint in enumerate(endpoints):
     with tf.Graph().as_default():
       inputs = tf.random_uniform((batch_size, height, width, 3))
       out_tensor, end_points = inception.inception_v1_base(
           inputs, final_endpoint=endpoint)
       self.assertTrue(out_tensor.op.name.startswith(
           'InceptionV1/' + endpoint))
       self.assertItemsEqual(endpoints[:index+1], end_points)