Ejemplo n.º 1
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 lr_actor=LR_ACTOR,
                 lr_critic=LR_CRITIC,
                 random_seed=42,
                 num_agents=1):
        """Initialize Agent object.
        
        Params
        ====
            state_size (int): Dimension of each state
            action_size (int): Dimension of each action
            lr_actor (float): Learning rate for actor model
            lr_critic (float): Learning Rate for critic model
            random_seed (int): Random seed
            num_agents (int): Number of agents
            
        return 
        ====
            None
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        # Initialize time step (for updating every hyperparameters["update_every"] steps)
        self.t_step = 0

        # Actor network
        self.actor = ActorNetwork(lr_actor,
                                  state_size,
                                  action_size,
                                  random_seed,
                                  name="actor")
        self.actor_target = ActorNetwork(lr_actor,
                                         state_size,
                                         action_size,
                                         random_seed,
                                         name="actor_target")

        self.soft_update(self.actor, self.actor_target, tau=1)

        # Critic network
        self.critic = CriticNetwork(lr_critic,
                                    state_size,
                                    action_size,
                                    random_seed,
                                    name="critic")
        self.critic_target = CriticNetwork(lr_critic,
                                           state_size,
                                           action_size,
                                           random_seed,
                                           name="critic_target")

        self.soft_update(self.critic, self.critic_target, tau=1)

        # Noise process
        self.noise = OUActionNoise(mu=np.zeros(action_size))

        # Replay buffer memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

    def step(self, states, actions, rewards, next_states, dones):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        # Support for multi agents learners
        for state, action, reward, next_state, done in zip(
                states, actions, rewards, next_states, dones):
            self.memory.add(state, action, reward, next_state, done)
        # Update timestep to learn
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        # Learn, if enough samples are available in memory
        if len(self.memory) > BATCH_SIZE and self.t_step == 0:
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        states = T.from_numpy(state).float().to(device)
        self.actor.eval()
        with T.no_grad():
            actions = self.actor(states).cpu().data.numpy()
        self.actor.train()

        if add_noise:
            actions += self.noise.sample()
        return np.clip(actions, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic.optimizer.zero_grad()
        critic_loss.backward()
        T.nn.utils.clip_grad_norm_(self.critic.parameters(), 1.0)
        self.critic.optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor(states)
        actor_loss = -self.critic(states, actions_pred).mean()
        # Minimize the loss
        self.actor.optimizer.zero_grad()
        actor_loss.backward()
        self.actor.optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic, self.critic_target, TAU)
        self.soft_update(self.actor, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def save_models(self):
        """ Save models weights """
        self.actor.save_checkpoint()
        self.critic.save_checkpoint()
        self.actor_target.save_checkpoint()
        self.critic_target.save_checkpoint()

    def load_models(self):
        """ Load models weights """
        self.actor.load_checkpoint()
        self.critic.load_checkpoint()
        self.actor_target.load_checkpoint()
        self.critic_target.load_checkpoint()
Ejemplo n.º 2
0
class Agent:
    def __init__(self, input_size, output_size, hidden = 256, lr_actor=1.0e-3, lr_critic=1.0e-3, agent_number=0, tau=1.0e-2,
                 gamma=0.99, epsilon=1.0, epsilon_decay=0.99, weight_decay=0, clipgrad=.1, seed = 42):
        super(Agent, self).__init__()
        
        self.seed = seed
        self.actor         = ActorNetwork(input_size, output_size, name=f"Actor_Agent{agent_number}").to(device)
        self.critic        = CriticNetwork(input_size, output_size, name=f"Critic_Agent{agent_number}").to(device)
        self.target_actor  = ActorNetwork(input_size, output_size, name=f"Actor_Target_Agent{agent_number}").to(device)
        self.target_critic = CriticNetwork(input_size, output_size, name=f"Critic_Target_Agent{agent_number}").to(device)
        
        
        
        self.noise = OUActionNoise(mu=np.zeros(output_size))
        self.tau = tau
        self.epsilon = epsilon
        self.epsilon_decay=epsilon_decay
        self.gamma = gamma
        self.clipgrad = clipgrad
        
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr_actor)
        self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr_critic, weight_decay=weight_decay)
       

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().unsqueeze(0).to(device) #.unsqueeze(0)
        self.actor.eval()
        with torch.no_grad():
            action = self.actor(state).cpu().squeeze(0).data.numpy()

        self.actor.train()
        if add_noise:
            action += self.noise.sample() * self.epsilon
        return np.clip(action, -1, 1)
    
    
    def learn(self, experiences):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        

        

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.target_actor(next_states.to(device))
        #set_trace()
        Q_targets_next = self.target_critic(next_states.to(device), actions_next.to(device))
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic(states, actions)
        critic_loss = f.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        clip_grad_norm_(self.critic.parameters(), self.clipgrad)
        self.critic_optimizer.step()

        #    update actor
        # Compute actor loss
        actions_pred = self.actor(states)
        actor_loss = -self.critic(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        #clip_grad_norm_(self.actor.parameters(), self.clipgrad)
        self.actor_optimizer.step()

        #    update target networks
        self.soft_update(self.critic, self.target_critic )
        self.soft_update(self.actor, self.target_actor)                     
        
        #    update epsilon and noise
        self.epsilon *= self.epsilon_decay
        self.noise.reset()
    


    def reset(self):
        self.noise.reset()
    
    def soft_update(self, local_model, target_model):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data)
            
    def save_models(self):
        """ Save models weights """
        self.actor.save_checkpoint()
        self.critic.save_checkpoint()
        self.target_actor.save_checkpoint()
        self.target_critic.save_checkpoint()
        
    def load_models(self):
        """ Load models weights """
        self.actor.load_checkpoint()
        self.critic.load_checkpoint()
        self.target_actor.load_checkpoint()
        self.target_critic.load_checkpoint()